1 00:00:00,410 --> 00:00:01,670 有个反应是 2 00:00:01,690 --> 00:00:03,420 1mol的甲烷 3 00:00:03,430 --> 00:00:05,590 和2mol的氧气反应 4 00:00:05,610 --> 00:00:08,220 会生成1mol的二氧化碳 5 00:00:08,240 --> 00:00:09,430 和2mol的水 6 00:00:09,440 --> 00:00:11,630 这集里 我们想判断 7 00:00:11,650 --> 00:00:14,940 这个反应是不是自发的 8 00:00:14,960 --> 00:00:16,200 上次我们已经学过 9 00:00:16,210 --> 00:00:17,750 怎么判断自发性啦 10 00:00:17,760 --> 00:00:19,700 这时候就要利用吉布斯自由能 11 00:00:19,710 --> 00:00:21,330 或吉布斯自由能变啦 12 00:00:21,340 --> 00:00:23,520 而吉布斯自由能变ΔG 13 00:00:23,530 --> 00:00:28,140 等于反应的焓变ΔH 14 00:00:28,160 --> 00:00:30,700 减去反应的温度T 15 00:00:30,710 --> 00:00:32,820 乘以熵变ΔS 16 00:00:32,840 --> 00:00:35,010 如果ΔG<0 17 00:00:35,030 --> 00:00:39,400 那反应就是自发的了 18 00:00:39,410 --> 00:00:41,860 我先给大伙开个好头 19 00:00:41,880 --> 00:00:44,040 我刚刚已经把 20 00:00:44,060 --> 00:00:46,080 反应的焓变算出来了 21 00:00:46,090 --> 00:00:47,460 就在这里呢 22 00:00:47,480 --> 00:00:48,440 大家都知道怎么求ΔH了吧 23 00:00:48,450 --> 00:00:50,170 几集前我们讲过的 24 00:00:50,180 --> 00:00:52,360 先查出来每个产物的 25 00:00:52,380 --> 00:00:54,480 生成热 26 00:00:54,490 --> 00:00:56,650 例如水 你要把生成热乘以2 27 00:00:56,670 --> 00:00:58,170 因为反应生成了2mol的水 28 00:00:58,180 --> 00:01:00,710 这样就有了产物的生成热之和 29 00:01:00,730 --> 00:01:02,070 然后再减去 30 00:01:02,090 --> 00:01:03,940 反应物的生成热之和 31 00:01:03,960 --> 00:01:07,100 当然啦 O2的生成热是0 32 00:01:07,110 --> 00:01:08,510 所以式子里面没有这项 33 00:01:08,520 --> 00:01:11,910 算出来就是 -890.3kJ 34 00:01:11,930 --> 00:01:12,060 好啦 35 00:01:12,070 --> 00:01:14,950 这就说明 反应是放热的 36 00:01:14,970 --> 00:01:18,380 方程式这边的能量小于… 37 00:01:18,400 --> 00:01:19,630 你也可以这样想的… 38 00:01:19,650 --> 00:01:20,360 比那边的能量小 39 00:01:20,370 --> 00:01:22,650 所以必须释放能量才行 40 00:01:22,670 --> 00:01:25,430 可以在这里写 +e e代表能量 41 00:01:25,440 --> 00:01:25,920 我写上 42 00:01:25,930 --> 00:01:28,080 加上释放出来的能量 43 00:01:28,100 --> 00:01:29,720 这就是反应放热的原因啦 44 00:01:29,740 --> 00:01:31,960 但是问题是 反应是不是自发的呢? 45 00:01:31,970 --> 00:01:33,550 想要判断反应的自发性 46 00:01:33,570 --> 00:01:39,240 首先要算出ΔS 47 00:01:39,260 --> 00:01:41,380 为了计算ΔS的值呢 48 00:01:41,400 --> 00:01:43,190 我提前就查好了 49 00:01:43,210 --> 00:01:48,140 这里每种分子的标准摩尔熵 50 00:01:48,160 --> 00:01:49,610 比如说 标准… 51 00:01:49,630 --> 00:01:51,410 我换个颜色表示 52 00:01:51,420 --> 00:01:53,360 标准 53 00:01:53,380 --> 00:01:56,790 小小讲点拓展 这里没有Δ 54 00:01:56,800 --> 00:02:00,510 我擦了吧 还能补救 55 00:02:00,530 --> 00:02:02,850 标准 56 00:02:02,870 --> 00:02:05,240 这里画个圈里面带个横表示 57 00:02:05,260 --> 00:02:07,400 标准摩尔熵Sm 58 00:02:07,410 --> 00:02:10,850 “标准”指的是在298°K下 59 00:02:10,860 --> 00:02:12,660 实际不应该说“度开尔文” 60 00:02:12,680 --> 00:02:14,590 就是298K 61 00:02:14,600 --> 00:02:16,420 用开尔文K的时候 62 00:02:16,440 --> 00:02:17,450 不用说度° 63 00:02:17,460 --> 00:02:19,240 所以反应温度是289K 64 00:02:19,260 --> 00:02:20,650 也就是25°C 65 00:02:20,660 --> 00:02:22,100 相当于室温 66 00:02:22,110 --> 00:02:24,300 所以用289K作标准状态 67 00:02:24,320 --> 00:02:29,240 所以室温下 甲烷的标准摩尔熵 68 00:02:29,260 --> 00:02:31,030 就等于这个数 69 00:02:37,810 --> 00:02:40,380 所以如果有1mol的甲烷 70 00:02:40,400 --> 00:02:43,890 就有186J/K的熵 71 00:02:43,900 --> 00:02:46,130 如果有2mol的甲烷 就乘以2 72 00:02:46,140 --> 00:02:48,420 如果有3mol 就乘以3 73 00:02:48,430 --> 00:02:53,460 所以这个反应的总熵变 74 00:02:53,470 --> 00:02:58,020 就是产物标准熵之和 75 00:02:58,040 --> 00:03:00,690 减去反应物标准熵之和 76 00:03:00,700 --> 00:03:02,550 就跟算ΔHr差不多 77 00:03:02,560 --> 00:03:09,760 所以熵变就等于213.6 加上… 78 00:03:09,770 --> 00:03:12,390 产物里有2mol的水 79 00:03:12,400 --> 00:03:15,920 所以就是加上2乘以… 80 00:03:15,940 --> 00:03:17,850 就取70好了 81 00:03:17,860 --> 00:03:19,800 69.9 约等于70 82 00:03:19,820 --> 00:03:21,910 加上2×70 83 00:03:21,920 --> 00:03:23,790 然后再减去 84 00:03:23,800 --> 00:03:26,110 反应物的熵之和 85 00:03:26,120 --> 00:03:28,910 也就是方程式这边的这些 86 00:03:28,920 --> 00:03:31,770 1molCH4的熵 87 00:03:31,780 --> 00:03:42,860 等于186 加上2×205 88 00:03:42,880 --> 00:03:44,250 大概心算一下 89 00:03:44,270 --> 00:03:45,670 这个数非常接近这个数 90 00:03:45,690 --> 00:03:48,020 但是这个数比这个数大得多 91 00:03:48,040 --> 00:03:50,330 液态水的熵… 92 00:03:50,350 --> 00:03:51,990 这是液态水的熵 93 00:03:52,000 --> 00:03:54,650 它的熵远远小于氧气的熵 94 00:03:54,670 --> 00:03:55,760 这很合理呀 95 00:03:55,770 --> 00:03:58,570 因为液态水的微观状态数比氧气少得多 96 00:03:58,580 --> 00:04:02,370 液态水都沉在容器底了 97 00:04:02,390 --> 00:04:03,040 气体就不同 98 00:04:03,050 --> 00:04:04,670 气体能膨胀 随空间变换形状 99 00:04:04,690 --> 00:04:06,030 所以理所当然 气体的熵 100 00:04:06,050 --> 00:04:08,150 比液体的熵大的多 101 00:04:08,170 --> 00:04:09,260 简单心算 102 00:04:09,270 --> 00:04:12,280 就已经能看出来产物的熵 103 00:04:12,300 --> 00:04:14,020 比反应物的熵小 104 00:04:14,030 --> 00:04:15,460 所以熵变应该是负的 105 00:04:15,480 --> 00:04:19,430 不过我们还是确认一下 106 00:04:19,440 --> 00:04:28,540 这个是213.6加上… 107 00:04:28,560 --> 00:04:30,750 是加上140 对嘛? 108 00:04:30,760 --> 00:04:31,380 是2×70 109 00:04:31,390 --> 00:04:35,550 加上140 就等于353.6 110 00:04:35,560 --> 00:04:39,900 这部分等于353.6 111 00:04:39,910 --> 00:04:43,580 然后从这里减去… 112 00:04:43,590 --> 00:04:52,660 所以186 加上2×205 113 00:04:52,670 --> 00:04:54,430 就等于596 114 00:04:54,440 --> 00:04:57,170 所以就是减去596 115 00:04:57,190 --> 00:04:58,600 最后等于什么? 116 00:04:58,620 --> 00:05:06,430 -596 加上353.6 117 00:05:06,440 --> 00:05:10,520 等于-242.4 118 00:05:10,530 --> 00:05:17,610 所以它就等于-242.4J/K 119 00:05:17,630 --> 00:05:21,200 这就是ΔS 负的 120 00:05:21,220 --> 00:05:24,060 所以系统的熵减少了这么多 121 00:05:24,080 --> 00:05:25,980 你可能对熵的单位大小没有概念 122 00:05:25,990 --> 00:05:28,950 不过只要知道是某个大小就可以 123 00:05:28,960 --> 00:05:29,620 但是你可以说 喏 124 00:05:29,630 --> 00:05:30,830 反应之后系统更有序啦 125 00:05:30,840 --> 00:05:32,760 这很合理 因为开始是一大堆气体 126 00:05:32,770 --> 00:05:35,350 开始是3个单独的分子 127 00:05:35,360 --> 00:05:38,300 有1个甲烷 还有2个氧气 128 00:05:38,310 --> 00:05:40,080 后来还是3个分子 129 00:05:40,100 --> 00:05:42,390 但是这个水是液态的 130 00:05:42,400 --> 00:05:45,520 所以 反应后熵减小是有道理的 131 00:05:45,530 --> 00:05:48,570 尤其液态物质 它的微观状态数很少 132 00:05:48,590 --> 00:05:49,430 我们来判断一下 133 00:05:49,450 --> 00:05:51,210 这个反应是不是自发的 134 00:05:51,220 --> 00:05:57,510 ΔG等于ΔH… 135 00:05:57,530 --> 00:06:00,880 反应放热 所以就是-890 136 00:06:00,900 --> 00:06:02,540 我把小数省略掉了 137 00:06:02,550 --> 00:06:03,990 我们不用那么精确 138 00:06:04,010 --> 00:06:05,930 减去温度 139 00:06:05,950 --> 00:06:08,280 假设反应是在室温下进行的 140 00:06:08,290 --> 00:06:10,210 所以温度是298°K 141 00:06:10,230 --> 00:06:13,390 就是… 我应该说“298K” 142 00:06:13,400 --> 00:06:14,420 我要改掉坏习惯 143 00:06:14,430 --> 00:06:15,910 在用K表示温度的时候 不说“°” 144 00:06:15,930 --> 00:06:18,710 298K 也就是25°C 145 00:06:18,730 --> 00:06:22,100 再乘以熵变 146 00:06:22,120 --> 00:06:24,920 这项是负的 147 00:06:24,940 --> 00:06:27,460 你可能会说 好的 是-242 148 00:06:27,470 --> 00:06:28,540 直接把这个数放进去 149 00:06:28,550 --> 00:06:30,360 但是你要非常非常非常的小心 150 00:06:30,370 --> 00:06:33,040 它的单位是千焦kJ 151 00:06:33,050 --> 00:06:34,940 可是它的单位是焦耳J 152 00:06:34,960 --> 00:06:37,630 所以如果都以千焦做单位的话 153 00:06:37,640 --> 00:06:38,870 因为前面写了kJ 154 00:06:38,890 --> 00:06:40,480 我们把这个也换算成千焦吧 155 00:06:40,500 --> 00:06:46,990 所以它就是0.242kJ/K 156 00:06:47,000 --> 00:06:48,100 前面放个小数点 157 00:06:48,110 --> 00:06:50,110 这里的0.45擦掉 158 00:06:50,120 --> 00:06:51,890 单位是kJ/k 159 00:06:51,910 --> 00:06:55,510 所以吉布斯自由能变 160 00:06:55,530 --> 00:07:00,250 就是-890kJ 减去298… 161 00:07:00,260 --> 00:07:02,660 负负得正 162 00:07:02,690 --> 00:07:03,880 完全合理 163 00:07:03,890 --> 00:07:05,650 因为熵的这项 164 00:07:05,660 --> 00:07:08,390 会使吉布斯自由能变得更正 165 00:07:08,410 --> 00:07:09,410 因为 166 00:07:09,430 --> 00:07:12,080 我们想让ΔG<0 167 00:07:12,090 --> 00:07:14,070 但是ΔS>0会降低自发性 168 00:07:14,090 --> 00:07:18,840 现在我们来看这项能不能抵消ΔH 169 00:07:18,850 --> 00:07:20,590 也就是放热的影响 170 00:07:20,610 --> 00:07:21,670 目测好像是不行 171 00:07:21,670 --> 00:07:23,710 因为一个小数乘以它 172 00:07:23,730 --> 00:07:25,130 得到的数肯定更小 173 00:07:25,150 --> 00:07:26,720 我们算算看 174 00:07:26,730 --> 00:07:31,040 所以除以 1,2,3 3个0 175 00:07:31,050 --> 00:07:34,320 系统的熵变 176 00:07:34,330 --> 00:07:37,810 乘以298 这是系统的温度 177 00:07:37,820 --> 00:07:40,160 等于-72 178 00:07:40,170 --> 00:07:42,610 所以这项就等于… 179 00:07:42,630 --> 00:07:43,790 因为前面还有个减号… 180 00:07:43,810 --> 00:07:46,860 所以就是加上72.2 181 00:07:46,870 --> 00:07:50,010 所以这就是标准温度下的熵的项 182 00:07:50,030 --> 00:07:51,360 最后就等于它咯 183 00:07:51,370 --> 00:07:53,040 而这是焓项 184 00:07:53,050 --> 00:07:54,160 这样我们就能看出来 185 00:07:54,180 --> 00:07:57,020 焓变的绝对值 186 00:07:57,040 --> 00:07:59,040 比T×ΔS的绝对值 187 00:07:59,050 --> 00:08:00,370 大得多 188 00:08:00,380 --> 00:08:04,530 所以这项压倒性胜利了 189 00:08:04,550 --> 00:08:06,910 虽然反应是个熵减的反应 190 00:08:06,920 --> 00:08:09,110 但是反应放出的热量太多了 191 00:08:09,130 --> 00:08:10,930 所以反应仍然是自发 192 00:08:10,950 --> 00:08:12,890 这个数显然小于0 193 00:08:12,910 --> 00:08:17,340 所以这是个自发反应 194 00:08:17,350 --> 00:08:19,400 如你所见 这些吉布斯自由能的问题 195 00:08:19,420 --> 00:08:20,710 其实没那么难 196 00:08:20,730 --> 00:08:23,570 只要知道这几项的值就行啦 197 00:08:23,580 --> 00:08:27,130 这几项的值要么直接给出 198 00:08:27,150 --> 00:08:27,970 比如ΔH 199 00:08:27,990 --> 00:08:29,830 不过我们也知道怎么求出来 200 00:08:29,850 --> 00:08:31,240 只要查到产物的 201 00:08:31,250 --> 00:08:32,540 生成热 202 00:08:32,550 --> 00:08:34,640 再减去反应物的生成热 203 00:08:34,650 --> 00:08:37,770 当然还要各自乘以相应的化学计量数 204 00:08:37,780 --> 00:08:40,170 然后 用同样的方法 205 00:08:40,180 --> 00:08:41,010 算出熵变 206 00:08:41,030 --> 00:08:43,650 查到每种产物的标准摩尔熵 207 00:08:43,670 --> 00:08:46,000 分别乘以相应的化学计量数 208 00:08:46,020 --> 00:08:47,810 再减去反应物的总熵 209 00:08:47,820 --> 00:08:49,970 然后把数代入这个式子中 210 00:08:49,990 --> 00:08:51,980 最后就得到了吉布斯自由能变 211 00:08:51,990 --> 00:08:54,560 这个例子里 ΔG是负的 212 00:08:54,570 --> 00:08:56,170 现在 大家可以想象一下 213 00:08:56,190 --> 00:08:57,780 温度极高的情况 214 00:08:57,800 --> 00:09:00,200 比如太阳表面之类的 215 00:09:00,220 --> 00:09:04,000 温度就不是298K啦 216 00:09:04,010 --> 00:09:07,980 温度一下子变成了2000K或者4000K 217 00:09:08,000 --> 00:09:09,920 这时候就有意思啦 218 00:09:09,940 --> 00:09:11,430 比如说 219 00:09:11,450 --> 00:09:15,660 反应温度是40000K 220 00:09:15,670 --> 00:09:17,520 那么熵这一项 221 00:09:17,540 --> 00:09:19,870 也就是熵减 影响就可大啦 222 00:09:19,890 --> 00:09:22,300 所以正的这一项 223 00:09:22,310 --> 00:09:23,190 就抵消这一项 224 00:09:23,210 --> 00:09:25,650 所以在超高温下 225 00:09:25,670 --> 00:09:28,010 反应可能就无法自发进行啦 226 00:09:28,020 --> 00:09:29,110 换个角度 227 00:09:29,120 --> 00:09:34,230 一个反应放出热量… 228 00:09:34,240 --> 00:09:36,300 环境温度已经非常高 229 00:09:36,310 --> 00:09:38,180 分子的动能已经很大了的时候 230 00:09:38,190 --> 00:09:40,020 放出的热量就没什么影响了 231 00:09:40,040 --> 00:09:41,460 如果环境温度足够高 232 00:09:41,480 --> 00:09:43,890 这个反应就不是自发的了 233 00:09:43,910 --> 00:09:47,060 因为熵项会把焓抵消掉 234 00:09:47,080 --> 00:09:47,500 好啦 235 00:09:47,520 --> 00:09:49,020 我只是想带大家算一次 236 00:09:49,040 --> 00:09:51,350 就是想让大家知道 这没那么难 237 00:09:51,370 --> 00:09:53,010 这些数据都可以从网上查到 238 00:09:53,020 --> 00:09:54,000 然后就能判断出 239 00:09:54,010 --> 00:09:56,320 反应是否可以自发进行了