WEBVTT 00:00:00.410 --> 00:00:01.670 有个反应是 00:00:01.690 --> 00:00:03.420 1mol的甲烷 00:00:03.430 --> 00:00:05.590 和2mol的氧气反应 00:00:05.610 --> 00:00:08.220 会生成1mol的二氧化碳 00:00:08.240 --> 00:00:09.430 和2mol的水 00:00:09.440 --> 00:00:11.630 这集里 我们想判断 00:00:11.650 --> 00:00:14.940 这个反应是不是自发的 00:00:14.960 --> 00:00:16.200 上次我们已经学过 00:00:16.210 --> 00:00:17.750 怎么判断自发性啦 00:00:17.760 --> 00:00:19.700 这时候就要利用吉布斯自由能 00:00:19.710 --> 00:00:21.330 或吉布斯自由能变啦 00:00:21.340 --> 00:00:23.520 而吉布斯自由能变ΔG 00:00:23.530 --> 00:00:28.140 等于反应的焓变ΔH 00:00:28.160 --> 00:00:30.700 减去反应的温度T 00:00:30.710 --> 00:00:32.820 乘以熵变ΔS 00:00:32.840 --> 00:00:35.010 如果ΔG<0 00:00:35.030 --> 00:00:39.400 那反应就是自发的了 00:00:39.410 --> 00:00:41.860 我先给大伙开个好头 00:00:41.880 --> 00:00:44.040 我刚刚已经把 00:00:44.060 --> 00:00:46.080 反应的焓变算出来了 00:00:46.090 --> 00:00:47.460 就在这里呢 00:00:47.480 --> 00:00:48.440 大家都知道怎么求ΔH了吧 00:00:48.450 --> 00:00:50.170 几集前我们讲过的 00:00:50.180 --> 00:00:52.360 先查出来每个产物的 00:00:52.380 --> 00:00:54.480 生成热 00:00:54.490 --> 00:00:56.650 例如水 你要把生成热乘以2 00:00:56.670 --> 00:00:58.170 因为反应生成了2mol的水 00:00:58.180 --> 00:01:00.710 这样就有了产物的生成热之和 00:01:00.730 --> 00:01:02.070 然后再减去 00:01:02.090 --> 00:01:03.940 反应物的生成热之和 00:01:03.960 --> 00:01:07.100 当然啦 O2的生成热是0 00:01:07.110 --> 00:01:08.510 所以式子里面没有这项 00:01:08.520 --> 00:01:11.910 算出来就是 -890.3kJ 00:01:11.930 --> 00:01:12.060 好啦 00:01:12.070 --> 00:01:14.950 这就说明 反应是放热的 00:01:14.970 --> 00:01:18.380 方程式这边的能量小于… 00:01:18.400 --> 00:01:19.630 你也可以这样想的… 00:01:19.650 --> 00:01:20.360 比那边的能量小 00:01:20.370 --> 00:01:22.650 所以必须释放能量才行 00:01:22.670 --> 00:01:25.430 可以在这里写 +e e代表能量 00:01:25.440 --> 00:01:25.920 我写上 00:01:25.930 --> 00:01:28.080 加上释放出来的能量 00:01:28.100 --> 00:01:29.720 这就是反应放热的原因啦 00:01:29.740 --> 00:01:31.960 但是问题是 反应是不是自发的呢? 00:01:31.970 --> 00:01:33.550 想要判断反应的自发性 00:01:33.570 --> 00:01:39.240 首先要算出ΔS 00:01:39.260 --> 00:01:41.380 为了计算ΔS的值呢 00:01:41.400 --> 00:01:43.190 我提前就查好了 00:01:43.210 --> 00:01:48.140 这里每种分子的标准摩尔熵 00:01:48.160 --> 00:01:49.610 比如说 标准… 00:01:49.630 --> 00:01:51.410 我换个颜色表示 00:01:51.420 --> 00:01:53.360 标准 00:01:53.380 --> 00:01:56.790 小小讲点拓展 这里没有Δ 00:01:56.800 --> 00:02:00.510 我擦了吧 还能补救 00:02:00.530 --> 00:02:02.850 标准 00:02:02.870 --> 00:02:05.240 这里画个圈里面带个横表示 00:02:05.260 --> 00:02:07.400 标准摩尔熵Sm 00:02:07.410 --> 00:02:10.850 “标准”指的是在298°K下 00:02:10.860 --> 00:02:12.660 实际不应该说“度开尔文” 00:02:12.680 --> 00:02:14.590 就是298K 00:02:14.600 --> 00:02:16.420 用开尔文K的时候 00:02:16.440 --> 00:02:17.450 不用说度° 00:02:17.460 --> 00:02:19.240 所以反应温度是289K 00:02:19.260 --> 00:02:20.650 也就是25°C 00:02:20.660 --> 00:02:22.100 相当于室温 00:02:22.110 --> 00:02:24.300 所以用289K作标准状态 00:02:24.320 --> 00:02:29.240 所以室温下 甲烷的标准摩尔熵 00:02:29.260 --> 00:02:31.030 就等于这个数 00:02:37.810 --> 00:02:40.380 所以如果有1mol的甲烷 00:02:40.400 --> 00:02:43.890 就有186J/K的熵 00:02:43.900 --> 00:02:46.130 如果有2mol的甲烷 就乘以2 00:02:46.140 --> 00:02:48.420 如果有3mol 就乘以3 00:02:48.430 --> 00:02:53.460 所以这个反应的总熵变 00:02:53.470 --> 00:02:58.020 就是产物标准熵之和 00:02:58.040 --> 00:03:00.690 减去反应物标准熵之和 00:03:00.700 --> 00:03:02.550 就跟算ΔHr差不多 00:03:02.560 --> 00:03:09.760 所以熵变就等于213.6 加上… 00:03:09.770 --> 00:03:12.390 产物里有2mol的水 00:03:12.400 --> 00:03:15.920 所以就是加上2乘以… 00:03:15.940 --> 00:03:17.850 就取70好了 00:03:17.860 --> 00:03:19.800 69.9 约等于70 00:03:19.820 --> 00:03:21.910 加上2×70 00:03:21.920 --> 00:03:23.790 然后再减去 00:03:23.800 --> 00:03:26.110 反应物的熵之和 00:03:26.120 --> 00:03:28.910 也就是方程式这边的这些 00:03:28.920 --> 00:03:31.770 1molCH4的熵 00:03:31.780 --> 00:03:42.860 等于186 加上2×205 00:03:42.880 --> 00:03:44.250 大概心算一下 00:03:44.270 --> 00:03:45.670 这个数非常接近这个数 00:03:45.690 --> 00:03:48.020 但是这个数比这个数大得多 00:03:48.040 --> 00:03:50.330 液态水的熵… 00:03:50.350 --> 00:03:51.990 这是液态水的熵 00:03:52.000 --> 00:03:54.650 它的熵远远小于氧气的熵 00:03:54.670 --> 00:03:55.760 这很合理呀 00:03:55.770 --> 00:03:58.570 因为液态水的微观状态数比氧气少得多 00:03:58.580 --> 00:04:02.370 液态水都沉在容器底了 00:04:02.390 --> 00:04:03.040 气体就不同 00:04:03.050 --> 00:04:04.670 气体能膨胀 随空间变换形状 00:04:04.690 --> 00:04:06.030 所以理所当然 气体的熵 00:04:06.050 --> 00:04:08.150 比液体的熵大的多 00:04:08.170 --> 00:04:09.260 简单心算 00:04:09.270 --> 00:04:12.280 就已经能看出来产物的熵 00:04:12.300 --> 00:04:14.020 比反应物的熵小 00:04:14.030 --> 00:04:15.460 所以熵变应该是负的 00:04:15.480 --> 00:04:19.430 不过我们还是确认一下 00:04:19.440 --> 00:04:28.540 这个是213.6加上… 00:04:28.560 --> 00:04:30.750 是加上140 对嘛? 00:04:30.760 --> 00:04:31.380 是2×70 00:04:31.390 --> 00:04:35.550 加上140 就等于353.6 00:04:35.560 --> 00:04:39.900 这部分等于353.6 00:04:39.910 --> 00:04:43.580 然后从这里减去… 00:04:43.590 --> 00:04:52.660 所以186 加上2×205 00:04:52.670 --> 00:04:54.430 就等于596 00:04:54.440 --> 00:04:57.170 所以就是减去596 00:04:57.190 --> 00:04:58.600 最后等于什么? 00:04:58.620 --> 00:05:06.430 -596 加上353.6 00:05:06.440 --> 00:05:10.520 等于-242.4 00:05:10.530 --> 00:05:17.610 所以它就等于-242.4J/K 00:05:17.630 --> 00:05:21.200 这就是ΔS 负的 00:05:21.220 --> 00:05:24.060 所以系统的熵减少了这么多 00:05:24.080 --> 00:05:25.980 你可能对熵的单位大小没有概念 00:05:25.990 --> 00:05:28.950 不过只要知道是某个大小就可以 00:05:28.960 --> 00:05:29.620 但是你可以说 喏 00:05:29.630 --> 00:05:30.830 反应之后系统更有序啦 00:05:30.840 --> 00:05:32.760 这很合理 因为开始是一大堆气体 00:05:32.770 --> 00:05:35.350 开始是3个单独的分子 00:05:35.360 --> 00:05:38.300 有1个甲烷 还有2个氧气 00:05:38.310 --> 00:05:40.080 后来还是3个分子 00:05:40.100 --> 00:05:42.390 但是这个水是液态的 00:05:42.400 --> 00:05:45.520 所以 反应后熵减小是有道理的 00:05:45.530 --> 00:05:48.570 尤其液态物质 它的微观状态数很少 00:05:48.590 --> 00:05:49.430 我们来判断一下 00:05:49.450 --> 00:05:51.210 这个反应是不是自发的 00:05:51.220 --> 00:05:57.510 ΔG等于ΔH… 00:05:57.530 --> 00:06:00.880 反应放热 所以就是-890 00:06:00.900 --> 00:06:02.540 我把小数省略掉了 00:06:02.550 --> 00:06:03.990 我们不用那么精确 00:06:04.010 --> 00:06:05.930 减去温度 00:06:05.950 --> 00:06:08.280 假设反应是在室温下进行的 00:06:08.290 --> 00:06:10.210 所以温度是298°K 00:06:10.230 --> 00:06:13.390 就是… 我应该说“298K” 00:06:13.400 --> 00:06:14.420 我要改掉坏习惯 00:06:14.430 --> 00:06:15.910 在用K表示温度的时候 不说“°” 00:06:15.930 --> 00:06:18.710 298K 也就是25°C 00:06:18.730 --> 00:06:22.100 再乘以熵变 00:06:22.120 --> 00:06:24.920 这项是负的 00:06:24.940 --> 00:06:27.460 你可能会说 好的 是-242 00:06:27.470 --> 00:06:28.540 直接把这个数放进去 00:06:28.550 --> 00:06:30.360 但是你要非常非常非常的小心 00:06:30.370 --> 00:06:33.040 它的单位是千焦kJ 00:06:33.050 --> 00:06:34.940 可是它的单位是焦耳J 00:06:34.960 --> 00:06:37.630 所以如果都以千焦做单位的话 00:06:37.640 --> 00:06:38.870 因为前面写了kJ 00:06:38.890 --> 00:06:40.480 我们把这个也换算成千焦吧 00:06:40.500 --> 00:06:46.990 所以它就是0.242kJ/K 00:06:47.000 --> 00:06:48.100 前面放个小数点 00:06:48.110 --> 00:06:50.110 这里的0.45擦掉 00:06:50.120 --> 00:06:51.890 单位是kJ/k 00:06:51.910 --> 00:06:55.510 所以吉布斯自由能变 00:06:55.530 --> 00:07:00.250 就是-890kJ 减去298… 00:07:00.260 --> 00:07:02.660 负负得正 00:07:02.690 --> 00:07:03.880 完全合理 00:07:03.890 --> 00:07:05.650 因为熵的这项 00:07:05.660 --> 00:07:08.390 会使吉布斯自由能变得更正 00:07:08.410 --> 00:07:09.410 因为 00:07:09.430 --> 00:07:12.080 我们想让ΔG<0 00:07:12.090 --> 00:07:14.070 但是ΔS>0会降低自发性 00:07:14.090 --> 00:07:18.840 现在我们来看这项能不能抵消ΔH 00:07:18.850 --> 00:07:20.590 也就是放热的影响 00:07:20.610 --> 00:07:21.670 目测好像是不行 00:07:21.670 --> 00:07:23.710 因为一个小数乘以它 00:07:23.730 --> 00:07:25.130 得到的数肯定更小 00:07:25.150 --> 00:07:26.720 我们算算看 00:07:26.730 --> 00:07:31.040 所以除以 1,2,3 3个0 00:07:31.050 --> 00:07:34.320 系统的熵变 00:07:34.330 --> 00:07:37.810 乘以298 这是系统的温度 00:07:37.820 --> 00:07:40.160 等于-72 00:07:40.170 --> 00:07:42.610 所以这项就等于… 00:07:42.630 --> 00:07:43.790 因为前面还有个减号… 00:07:43.810 --> 00:07:46.860 所以就是加上72.2 00:07:46.870 --> 00:07:50.010 所以这就是标准温度下的熵的项 00:07:50.030 --> 00:07:51.360 最后就等于它咯 00:07:51.370 --> 00:07:53.040 而这是焓项 00:07:53.050 --> 00:07:54.160 这样我们就能看出来 00:07:54.180 --> 00:07:57.020 焓变的绝对值 00:07:57.040 --> 00:07:59.040 比T×ΔS的绝对值 00:07:59.050 --> 00:08:00.370 大得多 00:08:00.380 --> 00:08:04.530 所以这项压倒性胜利了 00:08:04.550 --> 00:08:06.910 虽然反应是个熵减的反应 00:08:06.920 --> 00:08:09.110 但是反应放出的热量太多了 00:08:09.130 --> 00:08:10.930 所以反应仍然是自发 00:08:10.950 --> 00:08:12.890 这个数显然小于0 00:08:12.910 --> 00:08:17.340 所以这是个自发反应 00:08:17.350 --> 00:08:19.400 如你所见 这些吉布斯自由能的问题 00:08:19.420 --> 00:08:20.710 其实没那么难 00:08:20.730 --> 00:08:23.570 只要知道这几项的值就行啦 00:08:23.580 --> 00:08:27.130 这几项的值要么直接给出 00:08:27.150 --> 00:08:27.970 比如ΔH 00:08:27.990 --> 00:08:29.830 不过我们也知道怎么求出来 00:08:29.850 --> 00:08:31.240 只要查到产物的 00:08:31.250 --> 00:08:32.540 生成热 00:08:32.550 --> 00:08:34.640 再减去反应物的生成热 00:08:34.650 --> 00:08:37.770 当然还要各自乘以相应的化学计量数 00:08:37.780 --> 00:08:40.170 然后 用同样的方法 00:08:40.180 --> 00:08:41.010 算出熵变 00:08:41.030 --> 00:08:43.650 查到每种产物的标准摩尔熵 00:08:43.670 --> 00:08:46.000 分别乘以相应的化学计量数 00:08:46.020 --> 00:08:47.810 再减去反应物的总熵 00:08:47.820 --> 00:08:49.970 然后把数代入这个式子中 00:08:49.990 --> 00:08:51.980 最后就得到了吉布斯自由能变 00:08:51.990 --> 00:08:54.560 这个例子里 ΔG是负的 00:08:54.570 --> 00:08:56.170 现在 大家可以想象一下 00:08:56.190 --> 00:08:57.780 温度极高的情况 00:08:57.800 --> 00:09:00.200 比如太阳表面之类的 00:09:00.220 --> 00:09:04.000 温度就不是298K啦 00:09:04.010 --> 00:09:07.980 温度一下子变成了2000K或者4000K 00:09:08.000 --> 00:09:09.920 这时候就有意思啦 00:09:09.940 --> 00:09:11.430 比如说 00:09:11.450 --> 00:09:15.660 反应温度是40000K 00:09:15.670 --> 00:09:17.520 那么熵这一项 00:09:17.540 --> 00:09:19.870 也就是熵减 影响就可大啦 00:09:19.890 --> 00:09:22.300 所以正的这一项 00:09:22.310 --> 00:09:23.190 就抵消这一项 00:09:23.210 --> 00:09:25.650 所以在超高温下 00:09:25.670 --> 00:09:28.010 反应可能就无法自发进行啦 00:09:28.020 --> 00:09:29.110 换个角度 00:09:29.120 --> 00:09:34.230 一个反应放出热量… 00:09:34.240 --> 00:09:36.300 环境温度已经非常高 00:09:36.310 --> 00:09:38.180 分子的动能已经很大了的时候 00:09:38.190 --> 00:09:40.020 放出的热量就没什么影响了 00:09:40.040 --> 00:09:41.460 如果环境温度足够高 00:09:41.480 --> 00:09:43.890 这个反应就不是自发的了 00:09:43.910 --> 00:09:47.060 因为熵项会把焓抵消掉 00:09:47.080 --> 00:09:47.500 好啦 00:09:47.520 --> 00:09:49.020 我只是想带大家算一次 00:09:49.040 --> 00:09:51.350 就是想让大家知道 这没那么难 00:09:51.370 --> 00:09:53.010 这些数据都可以从网上查到 00:09:53.020 --> 00:09:54.000 然后就能判断出 00:09:54.010 --> 00:09:56.320 反应是否可以自发进行了