1 00:00:00,410 --> 00:00:01,670 有個反應是 2 00:00:01,690 --> 00:00:03,420 1mol的甲烷 3 00:00:03,430 --> 00:00:05,590 和2mol的氧氣反應 4 00:00:05,610 --> 00:00:08,220 會生成1mol的二氧化碳 5 00:00:08,240 --> 00:00:09,430 和2mol的水 6 00:00:09,440 --> 00:00:11,630 這集裏 我們想判斷 7 00:00:11,650 --> 00:00:14,940 這個反應是不是自發的 8 00:00:14,960 --> 00:00:16,200 上次我們已經學過 9 00:00:16,210 --> 00:00:17,750 怎麽判斷自發性啦 10 00:00:17,760 --> 00:00:19,700 這時候就要利用吉布斯自由能 11 00:00:19,710 --> 00:00:21,330 或吉布斯自由能變啦 12 00:00:21,340 --> 00:00:23,520 而吉布斯自由能變ΔG 13 00:00:23,530 --> 00:00:28,140 等於反應的焓變ΔH 14 00:00:28,160 --> 00:00:30,700 減去反應的溫度T 15 00:00:30,710 --> 00:00:32,820 乘以熵變ΔS 16 00:00:32,840 --> 00:00:35,010 如果ΔG<0 17 00:00:35,030 --> 00:00:39,400 那反應就是自發的了 18 00:00:39,410 --> 00:00:41,860 我先給大夥開個好頭 19 00:00:41,880 --> 00:00:44,040 我剛剛已經把 20 00:00:44,060 --> 00:00:46,080 反應的焓變算出來了 21 00:00:46,090 --> 00:00:47,460 就在這裡呢 22 00:00:47,480 --> 00:00:48,440 大家都知道怎麽求ΔH了吧 23 00:00:48,450 --> 00:00:50,170 幾集前我們講過的 24 00:00:50,180 --> 00:00:52,360 先查出來每個產物的 25 00:00:52,380 --> 00:00:54,480 生成熱 26 00:00:54,490 --> 00:00:56,650 例如水 你要把生成熱乘以2 27 00:00:56,670 --> 00:00:58,170 因爲反應生成了2mol的水 28 00:00:58,180 --> 00:01:00,710 這樣就有了產物的生成熱之和 29 00:01:00,730 --> 00:01:02,070 然後再減去 30 00:01:02,090 --> 00:01:03,940 反應物的生成熱之和 31 00:01:03,960 --> 00:01:07,100 當然啦 O2的生成熱是0 32 00:01:07,110 --> 00:01:08,510 所以式子裏面沒有這項 33 00:01:08,520 --> 00:01:11,910 算出來就是 -890.3kJ 34 00:01:11,930 --> 00:01:12,060 好啦 35 00:01:12,070 --> 00:01:14,950 這就說明 反應是放熱的 36 00:01:14,970 --> 00:01:18,380 方程式這邊的能量少於… 37 00:01:18,400 --> 00:01:19,630 你也可以這樣想的… 38 00:01:19,650 --> 00:01:20,360 比那邊的能量小 39 00:01:20,370 --> 00:01:22,650 所以必須釋放能量才行 40 00:01:22,670 --> 00:01:25,430 可以在這裡寫 +e e代表能量 41 00:01:25,440 --> 00:01:25,920 我寫上 42 00:01:25,930 --> 00:01:28,080 加上釋放出來的能量 43 00:01:28,100 --> 00:01:29,720 這就是反應放熱的原因啦 44 00:01:29,740 --> 00:01:31,960 但是問題是 反應是不是自發的呢? 45 00:01:31,970 --> 00:01:33,550 想要判斷反應的自發性 46 00:01:33,570 --> 00:01:39,240 首先要算出ΔS 47 00:01:39,260 --> 00:01:41,380 爲了計算ΔS的值呢 48 00:01:41,400 --> 00:01:43,190 我提前就查好了 49 00:01:43,210 --> 00:01:48,140 這裡每種分子的標準莫耳熵 50 00:01:48,160 --> 00:01:49,610 比如說 標準… 51 00:01:49,630 --> 00:01:51,410 我換個顏色表示 52 00:01:51,420 --> 00:01:53,360 標準 53 00:01:53,380 --> 00:01:56,790 小小講點拓展 這裡沒有Δ 54 00:01:56,800 --> 00:02:00,510 我擦了吧 還能補救 55 00:02:00,530 --> 00:02:02,850 標準 56 00:02:02,870 --> 00:02:05,240 這裡畫個圈裏面帶個橫表示 57 00:02:05,260 --> 00:02:07,400 標準莫耳熵Sm 58 00:02:07,410 --> 00:02:10,850 “標準”指的是在298°K下 59 00:02:10,860 --> 00:02:12,660 實際不應該說“度克耳文” 60 00:02:12,680 --> 00:02:14,590 就是298K 61 00:02:14,600 --> 00:02:16,420 用克耳文K的時候 62 00:02:16,440 --> 00:02:17,450 不用說度° 63 00:02:17,460 --> 00:02:19,240 所以反應溫度是289K 64 00:02:19,260 --> 00:02:20,650 也就是25°C 65 00:02:20,660 --> 00:02:22,100 相當於室溫 66 00:02:22,110 --> 00:02:24,300 所以用289K作標準狀態 67 00:02:24,320 --> 00:02:29,240 所以室溫下 甲烷的標準莫耳熵 68 00:02:29,260 --> 00:02:31,030 就等於這個數 69 00:02:37,810 --> 00:02:40,380 所以如果有1mol的甲烷 70 00:02:40,400 --> 00:02:43,890 就有186J/K的熵 71 00:02:43,900 --> 00:02:46,130 如果有2mol的甲烷 就乘以2 72 00:02:46,140 --> 00:02:48,420 如果有3mol 就乘以3 73 00:02:48,430 --> 00:02:53,460 所以這個反應的總熵變 74 00:02:53,470 --> 00:02:58,020 就是產物標準熵之和 75 00:02:58,040 --> 00:03:00,690 減去反應物標準熵之和 76 00:03:00,700 --> 00:03:02,550 就跟算ΔHr差不多 77 00:03:02,560 --> 00:03:09,760 所以熵變就等於213.6 加上… 78 00:03:09,770 --> 00:03:12,390 產物裏有2mol的水 79 00:03:12,400 --> 00:03:15,920 所以就是加上2乘以… 80 00:03:15,940 --> 00:03:17,850 就取70好了 81 00:03:17,860 --> 00:03:19,800 69.9 約等於70 82 00:03:19,820 --> 00:03:21,910 加上2×70 83 00:03:21,920 --> 00:03:23,790 然後再減去 84 00:03:23,800 --> 00:03:26,110 反應物的熵之和 85 00:03:26,120 --> 00:03:28,910 也就是方程式這邊的這些 86 00:03:28,920 --> 00:03:31,770 1molCH4的熵 87 00:03:31,780 --> 00:03:42,860 等於186 加上2×205 88 00:03:42,880 --> 00:03:44,250 大概心算一下 89 00:03:44,270 --> 00:03:45,670 這個數非常接近這個數 90 00:03:45,690 --> 00:03:48,020 但是這個數比這個數大得多 91 00:03:48,040 --> 00:03:50,330 液態水的熵… 92 00:03:50,350 --> 00:03:51,990 這是液態水的熵 93 00:03:52,000 --> 00:03:54,650 它的熵遠遠少於氧氣的熵 94 00:03:54,670 --> 00:03:55,760 這很合理呀 95 00:03:55,770 --> 00:03:58,570 因爲液態水的微觀狀態數比氧氣少得多 96 00:03:58,580 --> 00:04:02,370 液態水都沈在容器底了 97 00:04:02,390 --> 00:04:03,040 氣體就不同 98 00:04:03,050 --> 00:04:04,670 氣體能膨脹 隨空間變換形狀 99 00:04:04,690 --> 00:04:06,030 所以理所當然 氣體的熵 100 00:04:06,050 --> 00:04:08,150 比液體的熵大的多 101 00:04:08,170 --> 00:04:09,260 簡單心算 102 00:04:09,270 --> 00:04:12,280 就已經能看出來產物的熵 103 00:04:12,300 --> 00:04:14,020 比反應物的熵小 104 00:04:14,030 --> 00:04:15,460 所以熵變應該是負的 105 00:04:15,480 --> 00:04:19,430 不過我們還是確認一下 106 00:04:19,440 --> 00:04:28,540 這個是213.6加上… 107 00:04:28,560 --> 00:04:30,750 是加上140 對嘛? 108 00:04:30,760 --> 00:04:31,380 是2×70 109 00:04:31,390 --> 00:04:35,550 加上140 就等於353.6 110 00:04:35,560 --> 00:04:39,900 這部分等於353.6 111 00:04:39,910 --> 00:04:43,580 然後從這裡減去… 112 00:04:43,590 --> 00:04:52,660 所以186 加上2×205 113 00:04:52,670 --> 00:04:54,430 就等於596 114 00:04:54,440 --> 00:04:57,170 所以就是減去596 115 00:04:57,190 --> 00:04:58,600 最後等於什麽? 116 00:04:58,620 --> 00:05:06,430 -596 加上353.6 117 00:05:06,440 --> 00:05:10,520 等於-242.4 118 00:05:10,530 --> 00:05:17,610 所以它就等於-242.4J/K 119 00:05:17,630 --> 00:05:21,200 這就是ΔS 負的 120 00:05:21,220 --> 00:05:24,060 所以係統的熵減少了這麽多 121 00:05:24,080 --> 00:05:25,980 你可能對熵的單位大小沒有概念 122 00:05:25,990 --> 00:05:28,950 不過只要知道是某個大小就可以 123 00:05:28,960 --> 00:05:29,620 但是你可以說 喏 124 00:05:29,630 --> 00:05:30,830 反應之後係統更有序啦 125 00:05:30,840 --> 00:05:32,760 這很合理 因爲開始是一大堆氣體 126 00:05:32,770 --> 00:05:35,350 開始是3個單獨的分子 127 00:05:35,360 --> 00:05:38,300 有1個甲烷 還有2個氧氣 128 00:05:38,310 --> 00:05:40,080 後來還是3個分子 129 00:05:40,100 --> 00:05:42,390 但是這個水是液態的 130 00:05:42,400 --> 00:05:45,520 所以 反應後熵減小是有道理的 131 00:05:45,530 --> 00:05:48,570 尤其液態物質 它的微觀狀態數很少 132 00:05:48,590 --> 00:05:49,430 我們來判斷一下 133 00:05:49,450 --> 00:05:51,210 這個反應是不是自發的 134 00:05:51,220 --> 00:05:57,510 ΔG等於ΔH… 135 00:05:57,530 --> 00:06:00,880 反應放熱 所以就是-890 136 00:06:00,900 --> 00:06:02,540 我把小數省略掉了 137 00:06:02,550 --> 00:06:03,990 我們不用那麽精確 138 00:06:04,010 --> 00:06:05,930 減去溫度 139 00:06:05,950 --> 00:06:08,280 假設反應是在室溫下進行的 140 00:06:08,290 --> 00:06:10,210 所以溫度是298°K 141 00:06:10,230 --> 00:06:13,390 就是… 我應該說“298K” 142 00:06:13,400 --> 00:06:14,420 我要改掉壞習慣 143 00:06:14,430 --> 00:06:15,910 在用K表示溫度的時候 不說“°” 144 00:06:15,930 --> 00:06:18,710 298K 也就是25°C 145 00:06:18,730 --> 00:06:22,100 再乘以熵變 146 00:06:22,120 --> 00:06:24,920 這項是負的 147 00:06:24,940 --> 00:06:27,460 你可能會說 好的 是-242 148 00:06:27,470 --> 00:06:28,540 直接把這個數放進去 149 00:06:28,550 --> 00:06:30,360 但是你要非常非常非常的小心 150 00:06:30,370 --> 00:06:33,040 它的單位是千焦kJ 151 00:06:33,050 --> 00:06:34,940 可是它的單位是焦耳J 152 00:06:34,960 --> 00:06:37,630 所以如果都以千焦做單位的話 153 00:06:37,640 --> 00:06:38,870 因爲前面寫了kJ 154 00:06:38,890 --> 00:06:40,480 我們把這個也換算成千焦吧 155 00:06:40,500 --> 00:06:46,990 所以它就是0.242kJ/K 156 00:06:47,000 --> 00:06:48,100 前面放個小數點 157 00:06:48,110 --> 00:06:50,110 這裡的0.45擦掉 158 00:06:50,120 --> 00:06:51,890 單位是kJ/k 159 00:06:51,910 --> 00:06:55,510 所以吉布斯自由能變 160 00:06:55,530 --> 00:07:00,250 就是-890kJ 減去298… 161 00:07:00,260 --> 00:07:02,660 負負得正 162 00:07:02,690 --> 00:07:03,880 完全合理 163 00:07:03,890 --> 00:07:05,650 因爲熵的這項 164 00:07:05,660 --> 00:07:08,390 會使吉布斯自由能變得更正 165 00:07:08,410 --> 00:07:09,410 因爲 166 00:07:09,430 --> 00:07:12,080 我們想讓ΔG<0 167 00:07:12,090 --> 00:07:14,070 但是ΔS>0會降低自發性 168 00:07:14,090 --> 00:07:18,840 現在我們來看這項能不能抵消ΔH 169 00:07:18,850 --> 00:07:20,590 也就是放熱的影響 170 00:07:20,610 --> 00:07:21,670 目測好像是不行 171 00:07:21,670 --> 00:07:23,710 因爲一個小數乘以它 172 00:07:23,730 --> 00:07:25,130 得到的數肯定更小 173 00:07:25,150 --> 00:07:26,720 我們算算看 174 00:07:26,730 --> 00:07:31,040 所以除以 1,2,3 3個0 175 00:07:31,050 --> 00:07:34,320 係統的熵變 176 00:07:34,330 --> 00:07:37,810 乘以298 這是係統的溫度 177 00:07:37,820 --> 00:07:40,160 等於-72 178 00:07:40,170 --> 00:07:42,610 所以這項就等於… 179 00:07:42,630 --> 00:07:43,790 因爲前面還有個減號… 180 00:07:43,810 --> 00:07:46,860 所以就是加上72.2 181 00:07:46,870 --> 00:07:50,010 所以這就是標準溫度下的熵的項 182 00:07:50,030 --> 00:07:51,360 最後就等於它咯 183 00:07:51,370 --> 00:07:53,040 而這是焓項 184 00:07:53,050 --> 00:07:54,160 這樣我們就能看出來 185 00:07:54,180 --> 00:07:57,020 焓變的絕對值 186 00:07:57,040 --> 00:07:59,040 比T×ΔS的絕對值 187 00:07:59,050 --> 00:08:00,370 大得多 188 00:08:00,380 --> 00:08:04,530 所以這項壓倒性勝利了 189 00:08:04,550 --> 00:08:06,910 雖然反應是個熵減的反應 190 00:08:06,920 --> 00:08:09,110 但是反應放出的熱量太多了 191 00:08:09,130 --> 00:08:10,930 所以反應仍然是自發 192 00:08:10,950 --> 00:08:12,890 這個數顯然少於0 193 00:08:12,910 --> 00:08:17,340 所以這是個自發反應 194 00:08:17,350 --> 00:08:19,400 如你所見 這些吉布斯自由能的問題 195 00:08:19,420 --> 00:08:20,710 其實沒那麽難 196 00:08:20,730 --> 00:08:23,570 只要知道這幾項的值就行啦 197 00:08:23,580 --> 00:08:27,130 這幾項的值要麽直接給出 198 00:08:27,150 --> 00:08:27,970 比如ΔH 199 00:08:27,990 --> 00:08:29,830 不過我們也知道怎麽求出來 200 00:08:29,850 --> 00:08:31,240 只要查到產物的 201 00:08:31,250 --> 00:08:32,540 生成熱 202 00:08:32,550 --> 00:08:34,640 再減去反應物的生成熱 203 00:08:34,650 --> 00:08:37,770 當然還要各自乘以相應的化學計量數 204 00:08:37,780 --> 00:08:40,170 然後 用同樣的方法 205 00:08:40,180 --> 00:08:41,010 算出熵變 206 00:08:41,030 --> 00:08:43,650 查到每種產物的標準莫耳熵 207 00:08:43,670 --> 00:08:46,000 分別乘以相應的化學計量數 208 00:08:46,020 --> 00:08:47,810 再減去反應物的總熵 209 00:08:47,820 --> 00:08:49,970 然後把數代入這個式子中 210 00:08:49,990 --> 00:08:51,980 最後就得到了吉布斯自由能變 211 00:08:51,990 --> 00:08:54,560 這個例子裏 ΔG是負的 212 00:08:54,570 --> 00:08:56,170 現在 大家可以想象一下 213 00:08:56,190 --> 00:08:57,780 溫度極高的情況 214 00:08:57,800 --> 00:09:00,200 比如太陽表面之類的 215 00:09:00,220 --> 00:09:04,000 溫度就不是298K啦 216 00:09:04,010 --> 00:09:07,980 溫度一下子變成了2000K或者4000K 217 00:09:08,000 --> 00:09:09,920 這時候就有意思啦 218 00:09:09,940 --> 00:09:11,430 比如說 219 00:09:11,450 --> 00:09:15,660 反應溫度是40000K 220 00:09:15,670 --> 00:09:17,520 那麽熵這一項 221 00:09:17,540 --> 00:09:19,870 也就是熵減 影響就可大啦 222 00:09:19,890 --> 00:09:22,300 所以正的這一項 223 00:09:22,310 --> 00:09:23,190 就抵消這一項 224 00:09:23,210 --> 00:09:25,650 所以在超高溫下 225 00:09:25,670 --> 00:09:28,010 反應可能就無法自發進行啦 226 00:09:28,020 --> 00:09:29,110 換個角度 227 00:09:29,120 --> 00:09:34,230 一個反應放出熱量… 228 00:09:34,240 --> 00:09:36,300 周圍溫度已經非常高 229 00:09:36,310 --> 00:09:38,180 分子的動能已經很大了的時候 230 00:09:38,190 --> 00:09:40,020 放出的熱量就沒什麽影響了 231 00:09:40,040 --> 00:09:41,460 如果周圍溫度足夠高 232 00:09:41,480 --> 00:09:43,890 這個反應就不是自發的了 233 00:09:43,910 --> 00:09:47,060 因爲熵項會把焓抵消掉 234 00:09:47,080 --> 00:09:47,500 好啦 235 00:09:47,520 --> 00:09:49,020 我只是想帶大家算一次 236 00:09:49,040 --> 00:09:51,350 就是想讓大家知道 這沒那麽難 237 00:09:51,370 --> 00:09:53,010 這些數據都可以從網上查到 238 00:09:53,020 --> 00:09:54,000 然後就能判斷出 239 00:09:54,010 --> 00:09:56,320 反應是否可以自發進行了