WEBVTT 00:00:00.410 --> 00:00:01.670 有個反應是 00:00:01.690 --> 00:00:03.420 1mol的甲烷 00:00:03.430 --> 00:00:05.590 和2mol的氧氣反應 00:00:05.610 --> 00:00:08.220 會生成1mol的二氧化碳 00:00:08.240 --> 00:00:09.430 和2mol的水 00:00:09.440 --> 00:00:11.630 這集裏 我們想判斷 00:00:11.650 --> 00:00:14.940 這個反應是不是自發的 00:00:14.960 --> 00:00:16.200 上次我們已經學過 00:00:16.210 --> 00:00:17.750 怎麽判斷自發性啦 00:00:17.760 --> 00:00:19.700 這時候就要利用吉布斯自由能 00:00:19.710 --> 00:00:21.330 或吉布斯自由能變啦 00:00:21.340 --> 00:00:23.520 而吉布斯自由能變ΔG 00:00:23.530 --> 00:00:28.140 等於反應的焓變ΔH 00:00:28.160 --> 00:00:30.700 減去反應的溫度T 00:00:30.710 --> 00:00:32.820 乘以熵變ΔS 00:00:32.840 --> 00:00:35.010 如果ΔG<0 00:00:35.030 --> 00:00:39.400 那反應就是自發的了 00:00:39.410 --> 00:00:41.860 我先給大夥開個好頭 00:00:41.880 --> 00:00:44.040 我剛剛已經把 00:00:44.060 --> 00:00:46.080 反應的焓變算出來了 00:00:46.090 --> 00:00:47.460 就在這裡呢 00:00:47.480 --> 00:00:48.440 大家都知道怎麽求ΔH了吧 00:00:48.450 --> 00:00:50.170 幾集前我們講過的 00:00:50.180 --> 00:00:52.360 先查出來每個產物的 00:00:52.380 --> 00:00:54.480 生成熱 00:00:54.490 --> 00:00:56.650 例如水 你要把生成熱乘以2 00:00:56.670 --> 00:00:58.170 因爲反應生成了2mol的水 00:00:58.180 --> 00:01:00.710 這樣就有了產物的生成熱之和 00:01:00.730 --> 00:01:02.070 然後再減去 00:01:02.090 --> 00:01:03.940 反應物的生成熱之和 00:01:03.960 --> 00:01:07.100 當然啦 O2的生成熱是0 00:01:07.110 --> 00:01:08.510 所以式子裏面沒有這項 00:01:08.520 --> 00:01:11.910 算出來就是 -890.3kJ 00:01:11.930 --> 00:01:12.060 好啦 00:01:12.070 --> 00:01:14.950 這就說明 反應是放熱的 00:01:14.970 --> 00:01:18.380 方程式這邊的能量少於… 00:01:18.400 --> 00:01:19.630 你也可以這樣想的… 00:01:19.650 --> 00:01:20.360 比那邊的能量小 00:01:20.370 --> 00:01:22.650 所以必須釋放能量才行 00:01:22.670 --> 00:01:25.430 可以在這裡寫 +e e代表能量 00:01:25.440 --> 00:01:25.920 我寫上 00:01:25.930 --> 00:01:28.080 加上釋放出來的能量 00:01:28.100 --> 00:01:29.720 這就是反應放熱的原因啦 00:01:29.740 --> 00:01:31.960 但是問題是 反應是不是自發的呢? 00:01:31.970 --> 00:01:33.550 想要判斷反應的自發性 00:01:33.570 --> 00:01:39.240 首先要算出ΔS 00:01:39.260 --> 00:01:41.380 爲了計算ΔS的值呢 00:01:41.400 --> 00:01:43.190 我提前就查好了 00:01:43.210 --> 00:01:48.140 這裡每種分子的標準莫耳熵 00:01:48.160 --> 00:01:49.610 比如說 標準… 00:01:49.630 --> 00:01:51.410 我換個顏色表示 00:01:51.420 --> 00:01:53.360 標準 00:01:53.380 --> 00:01:56.790 小小講點拓展 這裡沒有Δ 00:01:56.800 --> 00:02:00.510 我擦了吧 還能補救 00:02:00.530 --> 00:02:02.850 標準 00:02:02.870 --> 00:02:05.240 這裡畫個圈裏面帶個橫表示 00:02:05.260 --> 00:02:07.400 標準莫耳熵Sm 00:02:07.410 --> 00:02:10.850 “標準”指的是在298°K下 00:02:10.860 --> 00:02:12.660 實際不應該說“度克耳文” 00:02:12.680 --> 00:02:14.590 就是298K 00:02:14.600 --> 00:02:16.420 用克耳文K的時候 00:02:16.440 --> 00:02:17.450 不用說度° 00:02:17.460 --> 00:02:19.240 所以反應溫度是289K 00:02:19.260 --> 00:02:20.650 也就是25°C 00:02:20.660 --> 00:02:22.100 相當於室溫 00:02:22.110 --> 00:02:24.300 所以用289K作標準狀態 00:02:24.320 --> 00:02:29.240 所以室溫下 甲烷的標準莫耳熵 00:02:29.260 --> 00:02:31.030 就等於這個數 00:02:37.810 --> 00:02:40.380 所以如果有1mol的甲烷 00:02:40.400 --> 00:02:43.890 就有186J/K的熵 00:02:43.900 --> 00:02:46.130 如果有2mol的甲烷 就乘以2 00:02:46.140 --> 00:02:48.420 如果有3mol 就乘以3 00:02:48.430 --> 00:02:53.460 所以這個反應的總熵變 00:02:53.470 --> 00:02:58.020 就是產物標準熵之和 00:02:58.040 --> 00:03:00.690 減去反應物標準熵之和 00:03:00.700 --> 00:03:02.550 就跟算ΔHr差不多 00:03:02.560 --> 00:03:09.760 所以熵變就等於213.6 加上… 00:03:09.770 --> 00:03:12.390 產物裏有2mol的水 00:03:12.400 --> 00:03:15.920 所以就是加上2乘以… 00:03:15.940 --> 00:03:17.850 就取70好了 00:03:17.860 --> 00:03:19.800 69.9 約等於70 00:03:19.820 --> 00:03:21.910 加上2×70 00:03:21.920 --> 00:03:23.790 然後再減去 00:03:23.800 --> 00:03:26.110 反應物的熵之和 00:03:26.120 --> 00:03:28.910 也就是方程式這邊的這些 00:03:28.920 --> 00:03:31.770 1molCH4的熵 00:03:31.780 --> 00:03:42.860 等於186 加上2×205 00:03:42.880 --> 00:03:44.250 大概心算一下 00:03:44.270 --> 00:03:45.670 這個數非常接近這個數 00:03:45.690 --> 00:03:48.020 但是這個數比這個數大得多 00:03:48.040 --> 00:03:50.330 液態水的熵… 00:03:50.350 --> 00:03:51.990 這是液態水的熵 00:03:52.000 --> 00:03:54.650 它的熵遠遠少於氧氣的熵 00:03:54.670 --> 00:03:55.760 這很合理呀 00:03:55.770 --> 00:03:58.570 因爲液態水的微觀狀態數比氧氣少得多 00:03:58.580 --> 00:04:02.370 液態水都沈在容器底了 00:04:02.390 --> 00:04:03.040 氣體就不同 00:04:03.050 --> 00:04:04.670 氣體能膨脹 隨空間變換形狀 00:04:04.690 --> 00:04:06.030 所以理所當然 氣體的熵 00:04:06.050 --> 00:04:08.150 比液體的熵大的多 00:04:08.170 --> 00:04:09.260 簡單心算 00:04:09.270 --> 00:04:12.280 就已經能看出來產物的熵 00:04:12.300 --> 00:04:14.020 比反應物的熵小 00:04:14.030 --> 00:04:15.460 所以熵變應該是負的 00:04:15.480 --> 00:04:19.430 不過我們還是確認一下 00:04:19.440 --> 00:04:28.540 這個是213.6加上… 00:04:28.560 --> 00:04:30.750 是加上140 對嘛? 00:04:30.760 --> 00:04:31.380 是2×70 00:04:31.390 --> 00:04:35.550 加上140 就等於353.6 00:04:35.560 --> 00:04:39.900 這部分等於353.6 00:04:39.910 --> 00:04:43.580 然後從這裡減去… 00:04:43.590 --> 00:04:52.660 所以186 加上2×205 00:04:52.670 --> 00:04:54.430 就等於596 00:04:54.440 --> 00:04:57.170 所以就是減去596 00:04:57.190 --> 00:04:58.600 最後等於什麽? 00:04:58.620 --> 00:05:06.430 -596 加上353.6 00:05:06.440 --> 00:05:10.520 等於-242.4 00:05:10.530 --> 00:05:17.610 所以它就等於-242.4J/K 00:05:17.630 --> 00:05:21.200 這就是ΔS 負的 00:05:21.220 --> 00:05:24.060 所以係統的熵減少了這麽多 00:05:24.080 --> 00:05:25.980 你可能對熵的單位大小沒有概念 00:05:25.990 --> 00:05:28.950 不過只要知道是某個大小就可以 00:05:28.960 --> 00:05:29.620 但是你可以說 喏 00:05:29.630 --> 00:05:30.830 反應之後係統更有序啦 00:05:30.840 --> 00:05:32.760 這很合理 因爲開始是一大堆氣體 00:05:32.770 --> 00:05:35.350 開始是3個單獨的分子 00:05:35.360 --> 00:05:38.300 有1個甲烷 還有2個氧氣 00:05:38.310 --> 00:05:40.080 後來還是3個分子 00:05:40.100 --> 00:05:42.390 但是這個水是液態的 00:05:42.400 --> 00:05:45.520 所以 反應後熵減小是有道理的 00:05:45.530 --> 00:05:48.570 尤其液態物質 它的微觀狀態數很少 00:05:48.590 --> 00:05:49.430 我們來判斷一下 00:05:49.450 --> 00:05:51.210 這個反應是不是自發的 00:05:51.220 --> 00:05:57.510 ΔG等於ΔH… 00:05:57.530 --> 00:06:00.880 反應放熱 所以就是-890 00:06:00.900 --> 00:06:02.540 我把小數省略掉了 00:06:02.550 --> 00:06:03.990 我們不用那麽精確 00:06:04.010 --> 00:06:05.930 減去溫度 00:06:05.950 --> 00:06:08.280 假設反應是在室溫下進行的 00:06:08.290 --> 00:06:10.210 所以溫度是298°K 00:06:10.230 --> 00:06:13.390 就是… 我應該說“298K” 00:06:13.400 --> 00:06:14.420 我要改掉壞習慣 00:06:14.430 --> 00:06:15.910 在用K表示溫度的時候 不說“°” 00:06:15.930 --> 00:06:18.710 298K 也就是25°C 00:06:18.730 --> 00:06:22.100 再乘以熵變 00:06:22.120 --> 00:06:24.920 這項是負的 00:06:24.940 --> 00:06:27.460 你可能會說 好的 是-242 00:06:27.470 --> 00:06:28.540 直接把這個數放進去 00:06:28.550 --> 00:06:30.360 但是你要非常非常非常的小心 00:06:30.370 --> 00:06:33.040 它的單位是千焦kJ 00:06:33.050 --> 00:06:34.940 可是它的單位是焦耳J 00:06:34.960 --> 00:06:37.630 所以如果都以千焦做單位的話 00:06:37.640 --> 00:06:38.870 因爲前面寫了kJ 00:06:38.890 --> 00:06:40.480 我們把這個也換算成千焦吧 00:06:40.500 --> 00:06:46.990 所以它就是0.242kJ/K 00:06:47.000 --> 00:06:48.100 前面放個小數點 00:06:48.110 --> 00:06:50.110 這裡的0.45擦掉 00:06:50.120 --> 00:06:51.890 單位是kJ/k 00:06:51.910 --> 00:06:55.510 所以吉布斯自由能變 00:06:55.530 --> 00:07:00.250 就是-890kJ 減去298… 00:07:00.260 --> 00:07:02.660 負負得正 00:07:02.690 --> 00:07:03.880 完全合理 00:07:03.890 --> 00:07:05.650 因爲熵的這項 00:07:05.660 --> 00:07:08.390 會使吉布斯自由能變得更正 00:07:08.410 --> 00:07:09.410 因爲 00:07:09.430 --> 00:07:12.080 我們想讓ΔG<0 00:07:12.090 --> 00:07:14.070 但是ΔS>0會降低自發性 00:07:14.090 --> 00:07:18.840 現在我們來看這項能不能抵消ΔH 00:07:18.850 --> 00:07:20.590 也就是放熱的影響 00:07:20.610 --> 00:07:21.670 目測好像是不行 00:07:21.670 --> 00:07:23.710 因爲一個小數乘以它 00:07:23.730 --> 00:07:25.130 得到的數肯定更小 00:07:25.150 --> 00:07:26.720 我們算算看 00:07:26.730 --> 00:07:31.040 所以除以 1,2,3 3個0 00:07:31.050 --> 00:07:34.320 係統的熵變 00:07:34.330 --> 00:07:37.810 乘以298 這是係統的溫度 00:07:37.820 --> 00:07:40.160 等於-72 00:07:40.170 --> 00:07:42.610 所以這項就等於… 00:07:42.630 --> 00:07:43.790 因爲前面還有個減號… 00:07:43.810 --> 00:07:46.860 所以就是加上72.2 00:07:46.870 --> 00:07:50.010 所以這就是標準溫度下的熵的項 00:07:50.030 --> 00:07:51.360 最後就等於它咯 00:07:51.370 --> 00:07:53.040 而這是焓項 00:07:53.050 --> 00:07:54.160 這樣我們就能看出來 00:07:54.180 --> 00:07:57.020 焓變的絕對值 00:07:57.040 --> 00:07:59.040 比T×ΔS的絕對值 00:07:59.050 --> 00:08:00.370 大得多 00:08:00.380 --> 00:08:04.530 所以這項壓倒性勝利了 00:08:04.550 --> 00:08:06.910 雖然反應是個熵減的反應 00:08:06.920 --> 00:08:09.110 但是反應放出的熱量太多了 00:08:09.130 --> 00:08:10.930 所以反應仍然是自發 00:08:10.950 --> 00:08:12.890 這個數顯然少於0 00:08:12.910 --> 00:08:17.340 所以這是個自發反應 00:08:17.350 --> 00:08:19.400 如你所見 這些吉布斯自由能的問題 00:08:19.420 --> 00:08:20.710 其實沒那麽難 00:08:20.730 --> 00:08:23.570 只要知道這幾項的值就行啦 00:08:23.580 --> 00:08:27.130 這幾項的值要麽直接給出 00:08:27.150 --> 00:08:27.970 比如ΔH 00:08:27.990 --> 00:08:29.830 不過我們也知道怎麽求出來 00:08:29.850 --> 00:08:31.240 只要查到產物的 00:08:31.250 --> 00:08:32.540 生成熱 00:08:32.550 --> 00:08:34.640 再減去反應物的生成熱 00:08:34.650 --> 00:08:37.770 當然還要各自乘以相應的化學計量數 00:08:37.780 --> 00:08:40.170 然後 用同樣的方法 00:08:40.180 --> 00:08:41.010 算出熵變 00:08:41.030 --> 00:08:43.650 查到每種產物的標準莫耳熵 00:08:43.670 --> 00:08:46.000 分別乘以相應的化學計量數 00:08:46.020 --> 00:08:47.810 再減去反應物的總熵 00:08:47.820 --> 00:08:49.970 然後把數代入這個式子中 00:08:49.990 --> 00:08:51.980 最後就得到了吉布斯自由能變 00:08:51.990 --> 00:08:54.560 這個例子裏 ΔG是負的 00:08:54.570 --> 00:08:56.170 現在 大家可以想象一下 00:08:56.190 --> 00:08:57.780 溫度極高的情況 00:08:57.800 --> 00:09:00.200 比如太陽表面之類的 00:09:00.220 --> 00:09:04.000 溫度就不是298K啦 00:09:04.010 --> 00:09:07.980 溫度一下子變成了2000K或者4000K 00:09:08.000 --> 00:09:09.920 這時候就有意思啦 00:09:09.940 --> 00:09:11.430 比如說 00:09:11.450 --> 00:09:15.660 反應溫度是40000K 00:09:15.670 --> 00:09:17.520 那麽熵這一項 00:09:17.540 --> 00:09:19.870 也就是熵減 影響就可大啦 00:09:19.890 --> 00:09:22.300 所以正的這一項 00:09:22.310 --> 00:09:23.190 就抵消這一項 00:09:23.210 --> 00:09:25.650 所以在超高溫下 00:09:25.670 --> 00:09:28.010 反應可能就無法自發進行啦 00:09:28.020 --> 00:09:29.110 換個角度 00:09:29.120 --> 00:09:34.230 一個反應放出熱量… 00:09:34.240 --> 00:09:36.300 周圍溫度已經非常高 00:09:36.310 --> 00:09:38.180 分子的動能已經很大了的時候 00:09:38.190 --> 00:09:40.020 放出的熱量就沒什麽影響了 00:09:40.040 --> 00:09:41.460 如果周圍溫度足夠高 00:09:41.480 --> 00:09:43.890 這個反應就不是自發的了 00:09:43.910 --> 00:09:47.060 因爲熵項會把焓抵消掉 00:09:47.080 --> 00:09:47.500 好啦 00:09:47.520 --> 00:09:49.020 我只是想帶大家算一次 00:09:49.040 --> 00:09:51.350 就是想讓大家知道 這沒那麽難 00:09:51.370 --> 00:09:53.010 這些數據都可以從網上查到 00:09:53.020 --> 00:09:54.000 然後就能判斷出 00:09:54.010 --> 00:09:56.320 反應是否可以自發進行了