[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.46,0:00:02.50,Default,,0000,0000,0000,,Some technologies are easier to understand Dialogue: 0,0:00:02.62,0:00:04.14,Default,,0000,0000,0000,,with the help of 3D animation Dialogue: 0,0:00:07.04,0:00:10.64,Default,,0000,0000,0000,,But, What about the 6-Speed Automatic transmition from Allison Dialogue: 0,0:00:13.30,0:00:14.76,Default,,0000,0000,0000,,To visualize and understand Dialogue: 0,0:00:14.76,0:00:16.54,Default,,0000,0000,0000,,This beautiful planetary gearset mechanism Dialogue: 0,0:00:17.06,0:00:18.84,Default,,0000,0000,0000,,A 2D Animation will be ideal Dialogue: 0,0:00:19.48,0:00:23.80,Default,,0000,0000,0000,,You can consider this 2D drawing as a cross section of the 3D model Dialogue: 0,0:00:25.04,0:00:28.46,Default,,0000,0000,0000,,A planetary gearset has 2 inputs and 1 output Dialogue: 0,0:00:29.88,0:00:32.78,Default,,0000,0000,0000,,If you properly understand working of a planetary gearset Dialogue: 0,0:00:32.82,0:00:37.34,Default,,0000,0000,0000,,You can easily understand automatic transmitions from the 2D animation Dialogue: 0,0:00:41.99,0:00:45.08,Default,,0000,0000,0000,,the essence of the planetary gearset is\Nthat just by giving Dialogue: 0,0:00:45.08,0:00:48.98,Default,,0000,0000,0000,,different speeds to the ring and sun\Ngears you will be able to get different Dialogue: 0,0:00:48.98,0:00:50.58,Default,,0000,0000,0000,,speeds at the output Dialogue: 0,0:01:00.07,0:01:04.00,Default,,0000,0000,0000,,the beauty of automatic transmissions\Nlies in how these different input speeds Dialogue: 0,0:01:04.00,0:01:05.45,Default,,0000,0000,0000,,are transmitted Dialogue: 0,0:01:05.45,0:01:07.59,Default,,0000,0000,0000,,let's see it in the 2D animation Dialogue: 0,0:01:11.10,0:01:14.92,Default,,0000,0000,0000,,this 3D planetary set is represented in 2D as shown Dialogue: 0,0:01:17.92,0:01:21.43,Default,,0000,0000,0000,,in an automatic transmission the input\Nand the output are not directly Dialogue: 0,0:01:21.43,0:01:25.45,Default,,0000,0000,0000,,connected they are connected through an\Nintermediate shaft as shown Dialogue: 0,0:01:26.92,0:01:31.48,Default,,0000,0000,0000,,now a small suggestion before you\Nproceed you will be able to explain all Dialogue: 0,0:01:31.48,0:01:36.42,Default,,0000,0000,0000,,seven gears by yourself by pausing the\Nvideo for a moment and understanding the mechanism Dialogue: 0,0:01:36.85,0:01:41.81,Default,,0000,0000,0000,,please try that at every single gear you\Nwill be amazed by the brilliance of this mechanism Dialogue: 0,0:01:43.54,0:01:48.49,Default,,0000,0000,0000,,if you press clutch see one the input\Nwill be connected to the sun gear if you Dialogue: 0,0:01:48.49,0:01:52.09,Default,,0000,0000,0000,,press clutch C5 the output rain gear\Nwill be stationary Dialogue: 0,0:01:53.09,0:01:56.09,Default,,0000,0000,0000,,this will result in the first gear Dialogue: 0,0:01:58.20,0:02:02.01,Default,,0000,0000,0000,,now let's add one more gear set here\Ncomes the tricky part Dialogue: 0,0:02:02.01,0:02:06.06,Default,,0000,0000,0000,,the carrier of this set is connected to\Nthe ring gear of the first set Dialogue: 0,0:02:06.06,0:02:10.90,Default,,0000,0000,0000,,this simply means that the output of the\Nsecond set is connected to the input of the first set Dialogue: 0,0:02:11.81,0:02:15.86,Default,,0000,0000,0000,,think for a moment about what happens\Nwhen you apply C1 and C4 Dialogue: 0,0:02:19.52,0:02:23.78,Default,,0000,0000,0000,,Since C4 is applied the ring gear of\Nthe second set will be stationary Dialogue: 0,0:02:24.35,0:02:29.43,Default,,0000,0000,0000,,this makes the carrier turn this carrier\Nis connected to the ring gear of the first set Dialogue: 0,0:02:29.72,0:02:32.96,Default,,0000,0000,0000,,so the ring gear of the first set will\Nalso turn Dialogue: 0,0:02:33.18,0:02:36.46,Default,,0000,0000,0000,,this in turn will increase the output speed Dialogue: 0,0:02:36.92,0:02:39.12,Default,,0000,0000,0000,,or we will get the second\Ngear Dialogue: 0,0:02:40.99,0:02:46.45,Default,,0000,0000,0000,,to obtain a fourth gear or direct drive\Na rotating clutch module is also used Dialogue: 0,0:02:47.81,0:02:51.97,Default,,0000,0000,0000,,we know that for a direct drive both the\NSun and the ring gear should rotate at Dialogue: 0,0:02:52.08,0:02:53.34,Default,,0000,0000,0000,,the input speed Dialogue: 0,0:02:54.06,0:02:57.39,Default,,0000,0000,0000,,if we press C2 and C1 together Dialogue: 0,0:02:57.39,0:02:58.95,Default,,0000,0000,0000,,this is what happens Dialogue: 0,0:03:01.19,0:03:07.37,Default,,0000,0000,0000,,in the very same mechanism if you apply\NC2 and C4 you will get very high speed Dialogue: 0,0:03:07.37,0:03:11.39,Default,,0000,0000,0000,,at the output think for a moment and try\Nto understand this Dialogue: 0,0:03:11.39,0:03:15.14,Default,,0000,0000,0000,,it is clear that the carrier of the\Nsecond set will turn at the input speed Dialogue: 0,0:03:15.68,0:03:18.68,Default,,0000,0000,0000,,however here the ring gear is stationary Dialogue: 0,0:03:20.68,0:03:21.61,Default,,0000,0000,0000,,this makes the sun gear Dialogue: 0,0:03:21.61,0:03:24.82,Default,,0000,0000,0000,,turn at almost three times the\Nspeed of the input Dialogue: 0,0:03:24.82,0:03:28.24,Default,,0000,0000,0000,,eventually a very high output speed is\Nobtained Dialogue: 0,0:03:30.64,0:03:34.33,Default,,0000,0000,0000,,one more gear set is used to obtain the\Nremaining gear ratios Dialogue: 0,0:03:34.33,0:03:38.41,Default,,0000,0000,0000,,however the sun gear of this set is not\Nconnected to the shaft Dialogue: 0,0:03:38.41,0:03:41.97,Default,,0000,0000,0000,,instead it is connected to the rotating\Nclutch module Dialogue: 0,0:03:41.98,0:03:45.42,Default,,0000,0000,0000,,so this sun gear will always turn at the\Ninput speed Dialogue: 0,0:03:46.26,0:03:48.26,Default,,0000,0000,0000,,and here again the output of Dialogue: 0,0:03:48.26,0:03:51.26,Default,,0000,0000,0000,,the set is connected to the input of the\Nadjacent set Dialogue: 0,0:03:51.95,0:03:57.08,Default,,0000,0000,0000,,for the remaining gear ratios C3 is\Nalways applied this means that the brown Dialogue: 0,0:03:57.08,0:04:01.19,Default,,0000,0000,0000,,carrier or ring gear of the second set\Nwill turn at one-third of the input Dialogue: 0,0:04:01.19,0:04:03.29,Default,,0000,0000,0000,,speed for the remaining cases Dialogue: 0,0:04:05.55,0:04:08.55,Default,,0000,0000,0000,,for the third gear apply see one as well Dialogue: 0,0:04:13.20,0:04:17.32,Default,,0000,0000,0000,,for the fifth gear apply C2 along with C3 Dialogue: 0,0:04:21.90,0:04:24.17,Default,,0000,0000,0000,,the reverse is an interesting mechanism Dialogue: 0,0:04:24.62,0:04:28.22,Default,,0000,0000,0000,,here C5 is applied along with C3 Dialogue: 0,0:04:28.22,0:04:31.61,Default,,0000,0000,0000,,so here the carrier of the second set is\Nstationary Dialogue: 0,0:04:32.67,0:04:36.78,Default,,0000,0000,0000,,this means that the planet gears of this\Nset will not be able to revolve Dialogue: 0,0:04:37.33,0:04:39.03,Default,,0000,0000,0000,,and that they will simply spin Dialogue: 0,0:04:40.16,0:04:44.72,Default,,0000,0000,0000,,this spin is in the same direction as\Nthe input this planetary spin will make Dialogue: 0,0:04:44.72,0:04:48.96,Default,,0000,0000,0000,,the corresponding sun gear spin in the\Nopposite direction as a result Dialogue: 0,0:04:49.43,0:04:53.75,Default,,0000,0000,0000,,the output sun gear will also turn in the\Nopposite direction and we will get Dialogue: 0,0:04:53.75,0:04:54.83,Default,,0000,0000,0000,,the tereverse gear Dialogue: 0,0:04:55.70,0:04:59.57,Default,,0000,0000,0000,,we hope that you enjoyed the brilliance\Nof the allison transmission mechanism to Dialogue: 0,0:04:59.57,0:05:02.21,Default,,0000,0000,0000,,make our free educational services\Nsustainable Dialogue: 0,0:05:02.21,0:05:05.21,Default,,0000,0000,0000,,please support us at patreon.com thank\Nyou