WEBVTT 00:00:00.520 --> 00:00:03.242 在上一个视频中,我们开始学习斯托克斯定理, 00:00:03.242 --> 00:00:04.700 在这个视频中, 00:00:04.700 --> 00:00:07.060 我想来看看,它与我们 00:00:07.060 --> 00:00:09.050 已经学习过的是不是一致。 00:00:09.050 --> 00:00:12.190 为了这个目的,我们想象--我先画出数轴, 00:00:12.190 --> 00:00:14.340 这是我的 z 轴, 00:00:14.340 --> 00:00:16.680 这是我的 x 轴, 00:00:16.680 --> 00:00:19.610 这是我的 y 轴, 00:00:19.610 --> 00:00:23.430 我们想象在 xy 平面有一个区域, 00:00:23.430 --> 00:00:25.770 我把它画出来, 00:00:25.770 --> 00:00:30.670 我们说,这是我在 xy平面的区域, 00:00:30.670 --> 00:00:34.850 我叫它 区域 R, 00:00:34.850 --> 00:00:36.580 我还有这个区域的边界, 00:00:36.580 --> 00:00:39.470 我们关心 00:00:39.470 --> 00:00:40.720 我们沿边界移动的方向, 00:00:40.720 --> 00:00:41.650 我们是 00:00:41.650 --> 00:00:43.180 沿边界逆时针移动, 00:00:43.180 --> 00:00:47.150 这样,我们就有一个环绕这个区域的路径, 00:00:47.150 --> 00:00:49.890 我们可以叫它 c , 00:00:49.890 --> 00:00:51.950 我们叫它 c ,我们 00:00:51.950 --> 00:00:57.010 要在它上面逆时针移动, 00:00:57.010 --> 00:01:02.310 我们还有一个矢量场, 00:01:02.310 --> 00:01:05.360 实质上,它的 i 分量只是 00:01:05.360 --> 00:01:08.030 x 和 y的函数, 00:01:08.030 --> 00:01:10.310 它的 j 分量 00:01:10.310 --> 00:01:12.530 只是 x 和 y 的函数, 00:01:12.530 --> 00:01:14.780 我们说,它没有 k 分量, 00:01:14.780 --> 00:01:17.230 这样,这个区域上的 矢量场, 00:01:17.230 --> 00:01:18.750 它就会是像这样的。 00:01:18.750 --> 00:01:20.422 我只是随机地画一些矢量, 00:01:20.422 --> 00:01:21.880 如果我离开这个区域, 00:01:21.880 --> 00:01:23.350 如果你沿 z 方向走, 00:01:23.350 --> 00:01:25.700 这只是越走越高, 00:01:25.700 --> 00:01:27.930 而那个矢量 00:01:27.930 --> 00:01:29.660 在你的 z 分量变化时,不会变化。 00:01:29.660 --> 00:01:31.450 所有的矢量实际上 00:01:31.450 --> 00:01:35.790 都平行于--当 z 等于 0 时-- 00:01:35.790 --> 00:01:39.100 都在 xy 平面上, 00:01:39.100 --> 00:01:41.480 这样,我们来思考一下, 00:01:41.480 --> 00:01:43.130 根据斯托克斯定理 00:01:43.130 --> 00:01:48.980 在这个路径上的线积分值是什么? 00:01:48.980 --> 00:01:51.470 我画得更好一点, 00:01:51.470 --> 00:02:00.960 F 点乘 dr 在路径 c 上的线积分, 00:02:00.960 --> 00:02:05.960 F 点乘 小写 dr,这里很明显 dr 00:02:05.960 --> 00:02:08.280 沿着这个路径。 00:02:08.280 --> 00:02:11.470 我们使用斯托克斯定理, 00:02:11.470 --> 00:02:13.850 这个量应该是 00:02:13.850 --> 00:02:14.610 等于这个量, 00:02:14.610 --> 00:02:18.850 它应该等于这个表面的双重积分, 00:02:18.850 --> 00:02:21.270 这个区域其实只是一个 00:02:21.270 --> 00:02:23.450 位于 xy 平面上的一个表面。 00:02:23.450 --> 00:02:26.077 它就应该是双重积分-- 00:02:26.077 --> 00:02:27.660 我来写成相同的 -- 00:02:27.660 --> 00:02:31.310 它会是这个区域 00:02:31.310 --> 00:02:35.110 也就是我们的这个表面 00:02:35.110 --> 00:02:37.840 F的旋度 点乘 n 的双重积分, 00:02:37.840 --> 00:02:40.437 所以,我们就需要考虑 F 的旋度点乘 n 是什么, 00:02:40.437 --> 00:02:42.270 ds 就是 00:02:42.270 --> 00:02:45.510 我们这个区域上的一个小面积, 00:02:45.510 --> 00:02:46.220 这里一个小面积, 00:02:46.220 --> 00:02:50.180 我不用 ds 我把它写成 da, 00:02:50.180 --> 00:02:54.000 我们来看, 00:02:54.000 --> 00:02:56.060 F 的旋度点乘 n 是什么, 00:02:56.060 --> 00:02:58.910 F 的旋度--我总是这样来记忆, 00:02:58.910 --> 00:03:00.810 我们要求出它的行列式, 00:03:00.810 --> 00:03:06.850 i,j, k, 00:03:06.850 --> 00:03:10.820 对 x 的偏导,对 y 的偏导, 00:03:10.820 --> 00:03:12.330 对 z 的偏导, 00:03:12.330 --> 00:03:14.450 这正式旋度的定义, 00:03:14.450 --> 00:03:16.820 我们要得到这个矢量场 00:03:16.820 --> 00:03:18.910 导致其旋转的量有多大, 00:03:18.910 --> 00:03:20.980 然后,我来求 i 分量, 00:03:20.980 --> 00:03:24.416 它就是我们的函数 P,它只是 x 和 y 的函数, 00:03:24.416 --> 00:03:26.990 j 分量,它是函数 Q, 00:03:26.990 --> 00:03:30.720 这里没有 z 分量,所以它是 0, 00:03:30.720 --> 00:03:32.892 这样,它就等于 00:03:32.892 --> 00:03:34.350 如果我们来看 i 分量, 00:03:34.350 --> 00:03:35.960 它就是 0 对 y 的偏导, 00:03:35.960 --> 00:03:42.570 它就是 0 ,减去 00:03:42.570 --> 00:03:43.450 Q 对 z 的偏导, 00:03:43.450 --> 00:03:46.000 Q 对 z 的偏导是什么? 00:03:46.000 --> 00:03:48.190 Q 根本不是 z 的函数, 00:03:48.190 --> 00:03:50.470 它也是 0, 00:03:50.470 --> 00:03:52.330 这不难理解, 00:03:52.330 --> 00:03:56.180 我们的 i 分量, 00:03:56.180 --> 00:03:57.130 它是 0 对 y 的偏导, 00:03:57.130 --> 00:04:01.000 它就是 0, 减去 00:04:01.000 --> 00:04:02.290 Q 对 z 的偏导, 00:04:02.290 --> 00:04:04.340 Q 对 z 的偏导, 00:04:04.340 --> 00:04:05.700 也是 0 , 00:04:05.700 --> 00:04:07.500 所以 i 分量等于 0, 00:04:07.500 --> 00:04:10.260 然后,我们要减去 j 分量, 00:04:10.260 --> 00:04:16.700 j 分量, 0 对 x 的偏导是 0, 00:04:16.700 --> 00:04:20.079 从它,减去 P 00:04:20.079 --> 00:04:22.180 对 z 的偏导, 00:04:22.180 --> 00:04:25.590 又是这样, P 根本不是 z 的函数, 00:04:25.590 --> 00:04:28.160 它又等于 0 , 00:04:28.160 --> 00:04:33.911 然后,你要加上 k 乘以 00:04:33.911 --> 00:04:34.410 Q 对 x 的偏导, 00:04:34.410 --> 00:04:36.320 记住, 它只是偏导算子, 00:04:36.320 --> 00:04:41.160 所以, Q 对 x 的偏导, 00:04:41.160 --> 00:04:43.450 然后,从它减去 00:04:43.450 --> 00:04:49.690 P 对 y 的偏导, 00:04:49.690 --> 00:04:56.150 这样, F 的旋度就简化成这样了。 00:04:56.150 --> 00:04:58.880 现在, n 是什么? 00:04:58.880 --> 00:05:02.250 这个单位法向量是什么, 00:05:02.250 --> 00:05:04.300 我们是在 xy 平面, 00:05:04.300 --> 00:05:05.930 那么,它的单位法向量 00:05:05.930 --> 00:05:07.940 就在 z 方向,向上, 00:05:07.940 --> 00:05:10.390 它的幅值是 1, 00:05:10.390 --> 00:05:12.450 在这种情况下,我们的单位法向量 00:05:12.450 --> 00:05:14.660 就是矢量 k , 00:05:14.660 --> 00:05:18.490 所以,实质上我们就是要--F的旋度就是它, 00:05:18.490 --> 00:05:21.880 而我们的单位法向量 00:05:21.880 --> 00:05:24.510 就等于 k , 00:05:24.510 --> 00:05:26.920 它就是单位向量 k , 00:05:26.920 --> 00:05:28.230 它是向上的, 00:05:28.230 --> 00:05:31.160 那么我们求 F 的旋度点乘 k 会是什么结果? 00:05:31.160 --> 00:05:34.030 如果我们把它点乘 k , 00:05:34.030 --> 00:05:36.080 它点乘它, 00:05:36.080 --> 00:05:39.730 好,那结果就是这一部分, 00:05:39.730 --> 00:05:43.930 F 的旋度点乘单位法向量 00:05:43.930 --> 00:05:45.400 就等于它, 00:05:45.400 --> 00:05:49.260 它就等于Q对 x 的偏导 00:05:49.260 --> 00:05:54.980 减去 P 对 y 的偏导。 00:05:54.980 --> 00:05:57.944 这很整洁,因为 00:05:57.944 --> 00:05:59.610 对这个特殊情况使用斯托克斯定理, 00:05:59.610 --> 00:06:03.030 这里是一个在 xy 平面上展开的表面, 00:06:03.030 --> 00:06:07.960 在这种情况下,它就归结维格林定理。 00:06:07.960 --> 00:06:12.030 这里的这些归结为格林定理, 00:06:12.030 --> 00:06:15.920 也就是说,格林定理其实就是斯托克斯定理的一个特例。 00:06:15.920 --> 00:06:17.840 我们来吧定理写得更整洁一些, 00:06:17.840 --> 00:06:20.390 我们看到格林定理 00:06:20.390 --> 00:06:22.800 其实就是斯托克斯定理的一个特例, 00:06:22.800 --> 00:06:27.360 这里我们的表面是一个平面,而且它在 xy 平面上。 00:06:27.360 --> 00:06:30.140 这让我们感觉良好, 00:06:30.140 --> 00:06:32.240 尽管我们还没有证明斯托克斯定理。 00:06:32.240 --> 00:06:34.530 但是我特别喜欢它的一点 00:06:34.530 --> 00:06:36.780 就是看到格林定理和斯托克斯定理是一致的, 00:06:36.780 --> 00:06:39.430 我们看到这里的描述很有意义。 00:06:39.430 --> 00:06:40.810 当我们第一次学习格林定理时,我们会想, 00:06:40.810 --> 00:06:41.380 这是什么? 00:06:41.380 --> 00:06:42.565 这里发生了什么? 00:06:42.565 --> 00:06:44.190 但是现在,它告诉我们, 00:06:44.190 --> 00:06:47.920 这只是在这个区域沿表面求旋度, 00:06:47.920 --> 00:06:50.840 现在我们开始意识到 00:06:50.840 --> 00:06:54.090 基于在上一个视频中看到的直观的描述,它很说明问题。