[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:01.92,0:00:04.68,Default,,0000,0000,0000,,great so I think we can start since the Dialogue: 0,0:00:04.68,0:00:07.86,Default,,0000,0000,0000,,meeting is recorded So if everyone uh Dialogue: 0,0:00:07.86,0:00:11.16,Default,,0000,0000,0000,,jump jumps in later can can watch the Dialogue: 0,0:00:11.16,0:00:12.42,Default,,0000,0000,0000,,recording Dialogue: 0,0:00:12.42,0:00:15.78,Default,,0000,0000,0000,,so hi everyone and welcome to these Dialogue: 0,0:00:15.78,0:00:18.00,Default,,0000,0000,0000,,um Cloud skill challenge study session Dialogue: 0,0:00:18.00,0:00:20.88,Default,,0000,0000,0000,,around a create classification models Dialogue: 0,0:00:20.88,0:00:24.00,Default,,0000,0000,0000,,with Azure machine learning designer Dialogue: 0,0:00:24.00,0:00:27.24,Default,,0000,0000,0000,,so today I'm thrilled to be here with Dialogue: 0,0:00:27.24,0:00:29.82,Default,,0000,0000,0000,,John uh John do my introduce briefly Dialogue: 0,0:00:29.82,0:00:31.62,Default,,0000,0000,0000,,yourself Dialogue: 0,0:00:31.62,0:00:34.16,Default,,0000,0000,0000,,uh thank you Carlotta hello everyone Dialogue: 0,0:00:34.16,0:00:38.16,Default,,0000,0000,0000,,Welcome to our Workshop today I hope Dialogue: 0,0:00:38.16,0:00:40.56,Default,,0000,0000,0000,,that you are all excited for it I am Dialogue: 0,0:00:40.56,0:00:43.14,Default,,0000,0000,0000,,John Aziz a gold Microsoft learn student Dialogue: 0,0:00:43.14,0:00:47.46,Default,,0000,0000,0000,,ambassador and I will be here with uh Dialogue: 0,0:00:47.46,0:00:50.76,Default,,0000,0000,0000,,Carlota to like do the Practical part Dialogue: 0,0:00:50.76,0:00:53.82,Default,,0000,0000,0000,,about this module of the cloud skills Dialogue: 0,0:00:53.82,0:00:57.00,Default,,0000,0000,0000,,challenge thank you for having me Dialogue: 0,0:00:57.00,0:00:59.22,Default,,0000,0000,0000,,perfect thanks John so for those who Dialogue: 0,0:00:59.22,0:01:03.44,Default,,0000,0000,0000,,don't know me I'm kellota Dialogue: 0,0:01:03.44,0:01:06.48,Default,,0000,0000,0000,,based in Italy and focus it on AI Dialogue: 0,0:01:06.48,0:01:08.76,Default,,0000,0000,0000,,machine learning Technologies and about Dialogue: 0,0:01:08.76,0:01:11.90,Default,,0000,0000,0000,,the use in education Dialogue: 0,0:01:12.06,0:01:13.20,Default,,0000,0000,0000,,um so Dialogue: 0,0:01:13.20,0:01:15.00,Default,,0000,0000,0000,,um these Cloud skill challenge study Dialogue: 0,0:01:15.00,0:01:17.58,Default,,0000,0000,0000,,session is based on a learn module a Dialogue: 0,0:01:17.58,0:01:21.54,Default,,0000,0000,0000,,dedicated learn module I sent to you uh Dialogue: 0,0:01:21.54,0:01:23.94,Default,,0000,0000,0000,,the link to this module uh in the chat Dialogue: 0,0:01:23.94,0:01:25.62,Default,,0000,0000,0000,,in a way that you can follow along the Dialogue: 0,0:01:25.62,0:01:28.68,Default,,0000,0000,0000,,model if you want or just have a look at Dialogue: 0,0:01:28.68,0:01:33.00,Default,,0000,0000,0000,,the module later at your own pace Dialogue: 0,0:01:33.00,0:01:33.78,Default,,0000,0000,0000,,um Dialogue: 0,0:01:33.78,0:01:37.02,Default,,0000,0000,0000,,so before starting I would also like to Dialogue: 0,0:01:37.02,0:01:40.62,Default,,0000,0000,0000,,remember to remember you uh the code of Dialogue: 0,0:01:40.62,0:01:43.44,Default,,0000,0000,0000,,conduct and guidelines of our student Dialogue: 0,0:01:43.44,0:01:47.64,Default,,0000,0000,0000,,Masters community so please during this Dialogue: 0,0:01:47.64,0:01:51.00,Default,,0000,0000,0000,,meeting be respectful and inclusive and Dialogue: 0,0:01:51.00,0:01:53.58,Default,,0000,0000,0000,,be friendly open and with coming and Dialogue: 0,0:01:53.58,0:01:56.16,Default,,0000,0000,0000,,respectful of other each other Dialogue: 0,0:01:56.16,0:01:57.72,Default,,0000,0000,0000,,differences Dialogue: 0,0:01:57.72,0:02:01.20,Default,,0000,0000,0000,,if you want to learn more about the code Dialogue: 0,0:02:01.20,0:02:03.54,Default,,0000,0000,0000,,of content you can use this link in the Dialogue: 0,0:02:03.54,0:02:08.88,Default,,0000,0000,0000,,deck again.ms slash s-a-c-o-c Dialogue: 0,0:02:09.66,0:02:12.42,Default,,0000,0000,0000,,and now we are Dialogue: 0,0:02:12.42,0:02:15.42,Default,,0000,0000,0000,,um we are ready to to start our session Dialogue: 0,0:02:15.42,0:02:18.96,Default,,0000,0000,0000,,so as we mentioned it we are going to Dialogue: 0,0:02:18.96,0:02:21.78,Default,,0000,0000,0000,,focus on classification models and Azure Dialogue: 0,0:02:21.78,0:02:24.90,Default,,0000,0000,0000,,ml uh today so first of all we are going Dialogue: 0,0:02:24.90,0:02:28.92,Default,,0000,0000,0000,,to um identify uh the kind of Dialogue: 0,0:02:28.92,0:02:31.08,Default,,0000,0000,0000,,um of scenarios in which you should Dialogue: 0,0:02:31.08,0:02:33.90,Default,,0000,0000,0000,,choose to use a classification model Dialogue: 0,0:02:33.90,0:02:36.66,Default,,0000,0000,0000,,we're going to introduce Azure machine Dialogue: 0,0:02:36.66,0:02:39.06,Default,,0000,0000,0000,,learning and Azure machine designer Dialogue: 0,0:02:39.06,0:02:41.88,Default,,0000,0000,0000,,we're going to understand uh which are Dialogue: 0,0:02:41.88,0:02:43.68,Default,,0000,0000,0000,,the steps to follow to create a Dialogue: 0,0:02:43.68,0:02:46.20,Default,,0000,0000,0000,,classification model in Azure mesh Dialogue: 0,0:02:46.20,0:02:48.60,Default,,0000,0000,0000,,learning and then John will Dialogue: 0,0:02:48.60,0:02:49.50,Default,,0000,0000,0000,,um Dialogue: 0,0:02:49.50,0:02:52.38,Default,,0000,0000,0000,,lead an amazing demo about training and Dialogue: 0,0:02:52.38,0:02:54.30,Default,,0000,0000,0000,,Publishing a classification model in Dialogue: 0,0:02:54.30,0:02:57.00,Default,,0000,0000,0000,,Azure ml designer Dialogue: 0,0:02:57.00,0:02:59.82,Default,,0000,0000,0000,,so let's start from the beginning let's Dialogue: 0,0:02:59.82,0:03:02.64,Default,,0000,0000,0000,,start from identifying classification Dialogue: 0,0:03:02.64,0:03:05.22,Default,,0000,0000,0000,,machine learning scenarios Dialogue: 0,0:03:05.22,0:03:07.64,Default,,0000,0000,0000,,so first of all what is classification Dialogue: 0,0:03:07.64,0:03:09.96,Default,,0000,0000,0000,,classification is a form of machine Dialogue: 0,0:03:09.96,0:03:12.12,Default,,0000,0000,0000,,learning that is used to predict which Dialogue: 0,0:03:12.12,0:03:15.60,Default,,0000,0000,0000,,category or class an item belongs to for Dialogue: 0,0:03:15.60,0:03:17.34,Default,,0000,0000,0000,,example we might want to develop a Dialogue: 0,0:03:17.34,0:03:19.80,Default,,0000,0000,0000,,classifier able to identify if an Dialogue: 0,0:03:19.80,0:03:22.20,Default,,0000,0000,0000,,Incoming Email should be filtered or not Dialogue: 0,0:03:22.20,0:03:25.08,Default,,0000,0000,0000,,according to the style the center the Dialogue: 0,0:03:25.08,0:03:28.14,Default,,0000,0000,0000,,length of the email Etc in this case the Dialogue: 0,0:03:28.14,0:03:30.06,Default,,0000,0000,0000,,characteristics of the email are the Dialogue: 0,0:03:30.06,0:03:31.08,Default,,0000,0000,0000,,features Dialogue: 0,0:03:31.08,0:03:34.20,Default,,0000,0000,0000,,and the label is a classification of Dialogue: 0,0:03:34.20,0:03:38.10,Default,,0000,0000,0000,,either a zero or one representing a Spam Dialogue: 0,0:03:38.10,0:03:40.86,Default,,0000,0000,0000,,or non-spam for the including email so Dialogue: 0,0:03:40.86,0:03:42.36,Default,,0000,0000,0000,,this is an example of a binary Dialogue: 0,0:03:42.36,0:03:44.40,Default,,0000,0000,0000,,classifier if you want to assign Dialogue: 0,0:03:44.40,0:03:46.26,Default,,0000,0000,0000,,multiple categories to the incoming Dialogue: 0,0:03:46.26,0:03:48.96,Default,,0000,0000,0000,,email like work letters love letters Dialogue: 0,0:03:48.96,0:03:52.08,Default,,0000,0000,0000,,complaints or other categories in this Dialogue: 0,0:03:52.08,0:03:54.00,Default,,0000,0000,0000,,case a binary classifier is not longer Dialogue: 0,0:03:54.00,0:03:55.74,Default,,0000,0000,0000,,enough and we should develop a Dialogue: 0,0:03:55.74,0:03:58.32,Default,,0000,0000,0000,,multi-class classifier so classification Dialogue: 0,0:03:58.32,0:04:00.60,Default,,0000,0000,0000,,is an example of what is called Dialogue: 0,0:04:00.60,0:04:02.52,Default,,0000,0000,0000,,supervised machine learning Dialogue: 0,0:04:02.52,0:04:05.28,Default,,0000,0000,0000,,in which you train a model using data Dialogue: 0,0:04:05.28,0:04:07.08,Default,,0000,0000,0000,,that includes both the features and Dialogue: 0,0:04:07.08,0:04:08.88,Default,,0000,0000,0000,,known values for label Dialogue: 0,0:04:08.88,0:04:11.10,Default,,0000,0000,0000,,so that the model learns to fit the Dialogue: 0,0:04:11.10,0:04:13.56,Default,,0000,0000,0000,,feature combinations to the label then Dialogue: 0,0:04:13.56,0:04:15.42,Default,,0000,0000,0000,,after training has been completed you Dialogue: 0,0:04:15.42,0:04:17.04,Default,,0000,0000,0000,,can use the train model to predict Dialogue: 0,0:04:17.04,0:04:19.50,Default,,0000,0000,0000,,labels for new items for for which the Dialogue: 0,0:04:19.50,0:04:22.32,Default,,0000,0000,0000,,label is unknown Dialogue: 0,0:04:22.32,0:04:25.44,Default,,0000,0000,0000,,but let's see some examples of scenarios Dialogue: 0,0:04:25.44,0:04:27.12,Default,,0000,0000,0000,,for classification machine learning Dialogue: 0,0:04:27.12,0:04:29.16,Default,,0000,0000,0000,,models so we already mentioned an Dialogue: 0,0:04:29.16,0:04:31.02,Default,,0000,0000,0000,,example of a solution in which we would Dialogue: 0,0:04:31.02,0:04:33.66,Default,,0000,0000,0000,,need a classifier but let's explore Dialogue: 0,0:04:33.66,0:04:35.70,Default,,0000,0000,0000,,other scenarios for classification in Dialogue: 0,0:04:35.70,0:04:37.98,Default,,0000,0000,0000,,other Industries for example you can use Dialogue: 0,0:04:37.98,0:04:40.38,Default,,0000,0000,0000,,a classification model for a health Dialogue: 0,0:04:40.38,0:04:43.68,Default,,0000,0000,0000,,clinic scenario and use clinical data to Dialogue: 0,0:04:43.68,0:04:45.72,Default,,0000,0000,0000,,predict whether patient will become sick Dialogue: 0,0:04:45.72,0:04:47.06,Default,,0000,0000,0000,,or not Dialogue: 0,0:04:47.06,0:04:49.68,Default,,0000,0000,0000,,uh you can use Dialogue: 0,0:04:49.68,0:04:51.74,Default,,0000,0000,0000,,um Dialogue: 0,0:05:03.78,0:05:07.86,Default,,0000,0000,0000,,oh sorry so when I became muted it's a Dialogue: 0,0:05:07.86,0:05:11.94,Default,,0000,0000,0000,,long time or you can use you can use uh Dialogue: 0,0:05:11.94,0:05:13.56,Default,,0000,0000,0000,,some models for classification for Dialogue: 0,0:05:13.56,0:05:16.92,Default,,0000,0000,0000,,example you can use you're saying this Dialogue: 0,0:05:16.92,0:05:21.20,Default,,0000,0000,0000,,uh so I I was I was Dialogue: 0,0:05:21.66,0:05:24.18,Default,,0000,0000,0000,,this one like you you have been muted Dialogue: 0,0:05:24.18,0:05:27.06,Default,,0000,0000,0000,,for uh one second okay okay perfect Dialogue: 0,0:05:27.06,0:05:30.42,Default,,0000,0000,0000,,perfect uh yeah I was talking sorry for Dialogue: 0,0:05:30.42,0:05:34.56,Default,,0000,0000,0000,,that so I was talking about the possible Dialogue: 0,0:05:34.56,0:05:37.32,Default,,0000,0000,0000,,you can use a classification model like Dialogue: 0,0:05:37.32,0:05:39.66,Default,,0000,0000,0000,,have Clinic scenario Financial scenario Dialogue: 0,0:05:39.66,0:05:41.70,Default,,0000,0000,0000,,or other third one is business type of Dialogue: 0,0:05:41.70,0:05:44.10,Default,,0000,0000,0000,,scenario you can use characteristics or Dialogue: 0,0:05:44.10,0:05:45.90,Default,,0000,0000,0000,,small business to predict if a new Dialogue: 0,0:05:45.90,0:05:47.88,Default,,0000,0000,0000,,Venture will will succeed or not for Dialogue: 0,0:05:47.88,0:05:49.56,Default,,0000,0000,0000,,example and these are all types of Dialogue: 0,0:05:49.56,0:05:52.16,Default,,0000,0000,0000,,binary classification Dialogue: 0,0:05:52.16,0:05:55.20,Default,,0000,0000,0000,,uh but today we are also going to talk Dialogue: 0,0:05:55.20,0:05:57.24,Default,,0000,0000,0000,,about Azure machine learning so let's Dialogue: 0,0:05:57.24,0:05:58.14,Default,,0000,0000,0000,,see Dialogue: 0,0:05:58.14,0:06:00.66,Default,,0000,0000,0000,,um what is azure Mash learning so Dialogue: 0,0:06:00.66,0:06:02.16,Default,,0000,0000,0000,,training and deploying an effective Dialogue: 0,0:06:02.16,0:06:04.20,Default,,0000,0000,0000,,machine learning model involves a lot of Dialogue: 0,0:06:04.20,0:06:06.54,Default,,0000,0000,0000,,work much of it time consuming and Dialogue: 0,0:06:06.54,0:06:08.88,Default,,0000,0000,0000,,resource intensive so Azure machine Dialogue: 0,0:06:08.88,0:06:11.04,Default,,0000,0000,0000,,learning is a cloud-based service that Dialogue: 0,0:06:11.04,0:06:12.78,Default,,0000,0000,0000,,helps simplify some of the tasks it Dialogue: 0,0:06:12.78,0:06:15.72,Default,,0000,0000,0000,,takes to prepare data train a model and Dialogue: 0,0:06:15.72,0:06:18.06,Default,,0000,0000,0000,,also deploy it as a predictive service Dialogue: 0,0:06:18.06,0:06:20.22,Default,,0000,0000,0000,,so it helps that the scientists increase Dialogue: 0,0:06:20.22,0:06:22.38,Default,,0000,0000,0000,,their efficiency by automating many of Dialogue: 0,0:06:22.38,0:06:24.66,Default,,0000,0000,0000,,the time consuming tasks Associated to Dialogue: 0,0:06:24.66,0:06:27.54,Default,,0000,0000,0000,,creating and training a model Dialogue: 0,0:06:27.54,0:06:29.52,Default,,0000,0000,0000,,and it enables them also to use Dialogue: 0,0:06:29.52,0:06:31.74,Default,,0000,0000,0000,,cloud-based compute resources that scale Dialogue: 0,0:06:31.74,0:06:33.72,Default,,0000,0000,0000,,effectively to handle large volumes of Dialogue: 0,0:06:33.72,0:06:36.30,Default,,0000,0000,0000,,data while incurring costs only when Dialogue: 0,0:06:36.30,0:06:38.70,Default,,0000,0000,0000,,actually used Dialogue: 0,0:06:38.70,0:06:41.22,Default,,0000,0000,0000,,to use Azure machine learning you Dialogue: 0,0:06:41.22,0:06:43.20,Default,,0000,0000,0000,,fasting fast you need to create a Dialogue: 0,0:06:43.20,0:06:44.94,Default,,0000,0000,0000,,workspace resource in your Azure Dialogue: 0,0:06:44.94,0:06:47.52,Default,,0000,0000,0000,,subscription and you can then use these Dialogue: 0,0:06:47.52,0:06:50.22,Default,,0000,0000,0000,,workspace to manage data compute Dialogue: 0,0:06:50.22,0:06:52.44,Default,,0000,0000,0000,,resources code models and other Dialogue: 0,0:06:52.44,0:06:55.14,Default,,0000,0000,0000,,artifacts after you have created an Dialogue: 0,0:06:55.14,0:06:56.82,Default,,0000,0000,0000,,Azure machine learning workspace you can Dialogue: 0,0:06:56.82,0:06:58.56,Default,,0000,0000,0000,,develop Solutions with the Azure machine Dialogue: 0,0:06:58.56,0:07:00.84,Default,,0000,0000,0000,,learning service either with developer Dialogue: 0,0:07:00.84,0:07:02.58,Default,,0000,0000,0000,,tools or the Azure machine Learning Dialogue: 0,0:07:02.58,0:07:04.38,Default,,0000,0000,0000,,Studio web portal Dialogue: 0,0:07:04.38,0:07:06.36,Default,,0000,0000,0000,,in particular International Learning Dialogue: 0,0:07:06.36,0:07:07.80,Default,,0000,0000,0000,,Studio is a web portal for machine Dialogue: 0,0:07:07.80,0:07:09.72,Default,,0000,0000,0000,,learning Solutions in Azure and it Dialogue: 0,0:07:09.72,0:07:11.64,Default,,0000,0000,0000,,includes a wide range of features and Dialogue: 0,0:07:11.64,0:07:13.80,Default,,0000,0000,0000,,capabilities that help data scientists Dialogue: 0,0:07:13.80,0:07:16.26,Default,,0000,0000,0000,,prepare data train models publish Dialogue: 0,0:07:16.26,0:07:18.48,Default,,0000,0000,0000,,Predictive Services and monitor also Dialogue: 0,0:07:18.48,0:07:19.68,Default,,0000,0000,0000,,their usage Dialogue: 0,0:07:19.68,0:07:22.14,Default,,0000,0000,0000,,so to begin using the web portal you Dialogue: 0,0:07:22.14,0:07:23.88,Default,,0000,0000,0000,,need to assign the workspace you created Dialogue: 0,0:07:23.88,0:07:26.82,Default,,0000,0000,0000,,in the Azure portal to the Azure machine Dialogue: 0,0:07:26.82,0:07:29.42,Default,,0000,0000,0000,,Learning Studio Dialogue: 0,0:07:29.52,0:07:31.80,Default,,0000,0000,0000,,as its core Azure Mash learning is a Dialogue: 0,0:07:31.80,0:07:33.72,Default,,0000,0000,0000,,service for training and managing Dialogue: 0,0:07:33.72,0:07:36.00,Default,,0000,0000,0000,,machine learning models for which you Dialogue: 0,0:07:36.00,0:07:38.22,Default,,0000,0000,0000,,need compute resources on which to run Dialogue: 0,0:07:38.22,0:07:39.92,Default,,0000,0000,0000,,the training process Dialogue: 0,0:07:39.92,0:07:44.28,Default,,0000,0000,0000,,compute targets are um one of the main Dialogue: 0,0:07:44.28,0:07:46.74,Default,,0000,0000,0000,,basic concept of azure Mash learning Dialogue: 0,0:07:46.74,0:07:48.78,Default,,0000,0000,0000,,they are cloud-based resources on which Dialogue: 0,0:07:48.78,0:07:50.64,Default,,0000,0000,0000,,you can run model training and AD Dialogue: 0,0:07:50.64,0:07:53.22,Default,,0000,0000,0000,,exploration processes Dialogue: 0,0:07:53.22,0:07:54.78,Default,,0000,0000,0000,,so initial machine Learning Studio you Dialogue: 0,0:07:54.78,0:07:56.76,Default,,0000,0000,0000,,can manage the compute targets for your Dialogue: 0,0:07:56.76,0:07:58.74,Default,,0000,0000,0000,,data science activities and there are Dialogue: 0,0:07:58.74,0:08:03.24,Default,,0000,0000,0000,,four kinds of of compute targets you can Dialogue: 0,0:08:03.24,0:08:05.94,Default,,0000,0000,0000,,create we have the computer instances Dialogue: 0,0:08:05.94,0:08:09.54,Default,,0000,0000,0000,,which are vital machine set up for Dialogue: 0,0:08:09.54,0:08:10.98,Default,,0000,0000,0000,,running machine learning code during Dialogue: 0,0:08:10.98,0:08:13.32,Default,,0000,0000,0000,,development so they are not designed for Dialogue: 0,0:08:13.32,0:08:14.46,Default,,0000,0000,0000,,production Dialogue: 0,0:08:14.46,0:08:17.10,Default,,0000,0000,0000,,then we have compute clusters which are Dialogue: 0,0:08:17.10,0:08:19.80,Default,,0000,0000,0000,,a set of virtual machines that can scale Dialogue: 0,0:08:19.80,0:08:22.20,Default,,0000,0000,0000,,up automatically based on traffic Dialogue: 0,0:08:22.20,0:08:24.60,Default,,0000,0000,0000,,we have inference clusters which are Dialogue: 0,0:08:24.60,0:08:26.70,Default,,0000,0000,0000,,similar to compute clusters but they are Dialogue: 0,0:08:26.70,0:08:29.34,Default,,0000,0000,0000,,designed for deployment so they are a Dialogue: 0,0:08:29.34,0:08:31.98,Default,,0000,0000,0000,,deployment targets for Predictive Dialogue: 0,0:08:31.98,0:08:35.82,Default,,0000,0000,0000,,Services that use train models Dialogue: 0,0:08:35.82,0:08:38.34,Default,,0000,0000,0000,,and finally we have attached compute Dialogue: 0,0:08:38.34,0:08:41.34,Default,,0000,0000,0000,,which are any compute Target that you Dialogue: 0,0:08:41.34,0:08:44.16,Default,,0000,0000,0000,,manage yourself outside of azramel like Dialogue: 0,0:08:44.16,0:08:46.56,Default,,0000,0000,0000,,for example virtual machines or Azure Dialogue: 0,0:08:46.56,0:08:49.70,Default,,0000,0000,0000,,databricks clusters Dialogue: 0,0:08:49.98,0:08:52.80,Default,,0000,0000,0000,,so we talked about Azure machine Dialogue: 0,0:08:52.80,0:08:54.30,Default,,0000,0000,0000,,learning but we also mentioned it Dialogue: 0,0:08:54.30,0:08:55.50,Default,,0000,0000,0000,,mentioned Azure machine learning Dialogue: 0,0:08:55.50,0:08:57.54,Default,,0000,0000,0000,,designer what is azure machine learning Dialogue: 0,0:08:57.54,0:09:00.12,Default,,0000,0000,0000,,designer so initial machine Learning Dialogue: 0,0:09:00.12,0:09:02.88,Default,,0000,0000,0000,,Studio there are several ways to author Dialogue: 0,0:09:02.88,0:09:04.56,Default,,0000,0000,0000,,classification machine learning models Dialogue: 0,0:09:04.56,0:09:08.10,Default,,0000,0000,0000,,one way is to use a visual interface and Dialogue: 0,0:09:08.10,0:09:10.26,Default,,0000,0000,0000,,this visual interface is called designer Dialogue: 0,0:09:10.26,0:09:13.14,Default,,0000,0000,0000,,and you can use it to train test and Dialogue: 0,0:09:13.14,0:09:15.54,Default,,0000,0000,0000,,also deploy machine learning models and Dialogue: 0,0:09:15.54,0:09:17.94,Default,,0000,0000,0000,,the drag and drop interface makes use of Dialogue: 0,0:09:17.94,0:09:20.28,Default,,0000,0000,0000,,clearly defined inputs and outputs that Dialogue: 0,0:09:20.28,0:09:22.68,Default,,0000,0000,0000,,can be shared reused and also Version Dialogue: 0,0:09:22.68,0:09:23.88,Default,,0000,0000,0000,,Control Dialogue: 0,0:09:23.88,0:09:25.92,Default,,0000,0000,0000,,and using the designer you can identify Dialogue: 0,0:09:25.92,0:09:28.08,Default,,0000,0000,0000,,the building blocks or components needed Dialogue: 0,0:09:28.08,0:09:30.84,Default,,0000,0000,0000,,for your model place and connect them on Dialogue: 0,0:09:30.84,0:09:33.12,Default,,0000,0000,0000,,your canvas and run a machine learning Dialogue: 0,0:09:33.12,0:09:35.30,Default,,0000,0000,0000,,job Dialogue: 0,0:09:35.40,0:09:36.78,Default,,0000,0000,0000,,so Dialogue: 0,0:09:36.78,0:09:39.12,Default,,0000,0000,0000,,um each designer project so each project Dialogue: 0,0:09:39.12,0:09:42.36,Default,,0000,0000,0000,,in the designer is known as a pipeline Dialogue: 0,0:09:42.36,0:09:45.60,Default,,0000,0000,0000,,and in the design we have a left panel Dialogue: 0,0:09:45.60,0:09:48.36,Default,,0000,0000,0000,,for navigation and a canvas on your Dialogue: 0,0:09:48.36,0:09:50.64,Default,,0000,0000,0000,,right hand side in which you build your Dialogue: 0,0:09:50.64,0:09:53.94,Default,,0000,0000,0000,,pipeline visually so pipelines let you Dialogue: 0,0:09:53.94,0:09:56.10,Default,,0000,0000,0000,,organize manage and reuse complex Dialogue: 0,0:09:56.10,0:09:58.26,Default,,0000,0000,0000,,machine learning workflows across Dialogue: 0,0:09:58.26,0:10:00.48,Default,,0000,0000,0000,,projects and users Dialogue: 0,0:10:00.48,0:10:03.00,Default,,0000,0000,0000,,a pipeline starts with the data set from Dialogue: 0,0:10:03.00,0:10:04.14,Default,,0000,0000,0000,,which you want to train the model Dialogue: 0,0:10:04.14,0:10:05.88,Default,,0000,0000,0000,,because all begins with data when Dialogue: 0,0:10:05.88,0:10:07.38,Default,,0000,0000,0000,,talking about data science and machine Dialogue: 0,0:10:07.38,0:10:09.54,Default,,0000,0000,0000,,learning and each time you run a Dialogue: 0,0:10:09.54,0:10:10.98,Default,,0000,0000,0000,,pipeline the configuration of the Dialogue: 0,0:10:10.98,0:10:12.96,Default,,0000,0000,0000,,pipeline and its results are stored in Dialogue: 0,0:10:12.96,0:10:17.34,Default,,0000,0000,0000,,your workspace as a pipeline job Dialogue: 0,0:10:17.34,0:10:21.96,Default,,0000,0000,0000,,so the second main concept of azure Dialogue: 0,0:10:21.96,0:10:25.08,Default,,0000,0000,0000,,machine learning is a component so going Dialogue: 0,0:10:25.08,0:10:28.44,Default,,0000,0000,0000,,hierarchically from the pipeline we can Dialogue: 0,0:10:28.44,0:10:30.54,Default,,0000,0000,0000,,say that each building block of a Dialogue: 0,0:10:30.54,0:10:33.92,Default,,0000,0000,0000,,pipeline is called a component Dialogue: 0,0:10:33.92,0:10:36.96,Default,,0000,0000,0000,,learning component encapsulate one step Dialogue: 0,0:10:36.96,0:10:39.42,Default,,0000,0000,0000,,in a machine learning pipeline so it's a Dialogue: 0,0:10:39.42,0:10:41.64,Default,,0000,0000,0000,,reusable piece of code with inputs and Dialogue: 0,0:10:41.64,0:10:44.10,Default,,0000,0000,0000,,outputs something very similar to a Dialogue: 0,0:10:44.10,0:10:46.50,Default,,0000,0000,0000,,function in any programming language Dialogue: 0,0:10:46.50,0:10:48.90,Default,,0000,0000,0000,,and in a pipeline project you can access Dialogue: 0,0:10:48.90,0:10:51.48,Default,,0000,0000,0000,,data assets and components from the left Dialogue: 0,0:10:51.48,0:10:52.70,Default,,0000,0000,0000,,panels Dialogue: 0,0:10:52.70,0:10:56.28,Default,,0000,0000,0000,,asset Library tab as you can see Dialogue: 0,0:10:56.28,0:11:00.20,Default,,0000,0000,0000,,um here in the screenshot in the deck Dialogue: 0,0:11:00.30,0:11:03.36,Default,,0000,0000,0000,,so you can create data assets on using Dialogue: 0,0:11:03.36,0:11:08.34,Default,,0000,0000,0000,,an adoc page called Data Page and a data Dialogue: 0,0:11:08.34,0:11:11.16,Default,,0000,0000,0000,,set is a reference to a data source Dialogue: 0,0:11:11.16,0:11:12.48,Default,,0000,0000,0000,,location Dialogue: 0,0:11:12.48,0:11:15.72,Default,,0000,0000,0000,,so this data source location could be a Dialogue: 0,0:11:15.72,0:11:18.78,Default,,0000,0000,0000,,local file a data store a web file or Dialogue: 0,0:11:18.78,0:11:21.66,Default,,0000,0000,0000,,even an age group open that set Dialogue: 0,0:11:21.66,0:11:23.88,Default,,0000,0000,0000,,and these data assets will appear along Dialogue: 0,0:11:23.88,0:11:26.46,Default,,0000,0000,0000,,with standard sample data set in the Dialogue: 0,0:11:26.46,0:11:30.02,Default,,0000,0000,0000,,designers asset Library Dialogue: 0,0:11:30.84,0:11:31.56,Default,,0000,0000,0000,,um Dialogue: 0,0:11:31.56,0:11:36.96,Default,,0000,0000,0000,,and another basic concept of azure ml is Dialogue: 0,0:11:36.96,0:11:38.88,Default,,0000,0000,0000,,azure machine learning jobs Dialogue: 0,0:11:38.88,0:11:43.52,Default,,0000,0000,0000,,so basically when you submit a pipeline Dialogue: 0,0:11:43.52,0:11:47.04,Default,,0000,0000,0000,,you create a job which will run all the Dialogue: 0,0:11:47.04,0:11:49.92,Default,,0000,0000,0000,,steps in your pipeline so a job execute Dialogue: 0,0:11:49.92,0:11:52.80,Default,,0000,0000,0000,,a task against a specified compute Dialogue: 0,0:11:52.80,0:11:53.76,Default,,0000,0000,0000,,Target Dialogue: 0,0:11:53.76,0:11:56.64,Default,,0000,0000,0000,,jobs enable systematic tracking for your Dialogue: 0,0:11:56.64,0:11:58.56,Default,,0000,0000,0000,,machine learning experimentation in Dialogue: 0,0:11:58.56,0:11:59.88,Default,,0000,0000,0000,,Azure ml Dialogue: 0,0:11:59.88,0:12:02.40,Default,,0000,0000,0000,,and once a job is created azramel Dialogue: 0,0:12:02.40,0:12:05.46,Default,,0000,0000,0000,,maintains a run record uh for for the Dialogue: 0,0:12:05.46,0:12:07.64,Default,,0000,0000,0000,,job Dialogue: 0,0:12:08.40,0:12:12.18,Default,,0000,0000,0000,,um but let's move to the classification Dialogue: 0,0:12:12.18,0:12:14.04,Default,,0000,0000,0000,,steps so Dialogue: 0,0:12:14.04,0:12:17.16,Default,,0000,0000,0000,,um let's introduce uh how to create a Dialogue: 0,0:12:17.16,0:12:21.36,Default,,0000,0000,0000,,classification model in Azure ml but you Dialogue: 0,0:12:21.36,0:12:23.64,Default,,0000,0000,0000,,will see it in more details in a Dialogue: 0,0:12:23.64,0:12:26.34,Default,,0000,0000,0000,,handsome demo that John will will guide Dialogue: 0,0:12:26.34,0:12:29.46,Default,,0000,0000,0000,,through in a few minutes Dialogue: 0,0:12:29.46,0:12:32.22,Default,,0000,0000,0000,,so you can think of the steps to train Dialogue: 0,0:12:32.22,0:12:33.72,Default,,0000,0000,0000,,and evaluate a classification machine Dialogue: 0,0:12:33.72,0:12:36.66,Default,,0000,0000,0000,,learning model as four main steps so Dialogue: 0,0:12:36.66,0:12:38.46,Default,,0000,0000,0000,,first of all you need to prepare your Dialogue: 0,0:12:38.46,0:12:41.10,Default,,0000,0000,0000,,data so you need to identify the Dialogue: 0,0:12:41.10,0:12:43.14,Default,,0000,0000,0000,,features and the label in your data set Dialogue: 0,0:12:43.14,0:12:46.14,Default,,0000,0000,0000,,you need to pre-process so you need to Dialogue: 0,0:12:46.14,0:12:48.84,Default,,0000,0000,0000,,clean and transform the data as needed Dialogue: 0,0:12:48.84,0:12:51.12,Default,,0000,0000,0000,,then the second step of course is Dialogue: 0,0:12:51.12,0:12:52.74,Default,,0000,0000,0000,,training the model Dialogue: 0,0:12:52.74,0:12:54.60,Default,,0000,0000,0000,,and for training the model you need to Dialogue: 0,0:12:54.60,0:12:57.06,Default,,0000,0000,0000,,split the data into two groups a Dialogue: 0,0:12:57.06,0:12:59.52,Default,,0000,0000,0000,,training and a validation set Dialogue: 0,0:12:59.52,0:13:01.32,Default,,0000,0000,0000,,then you train a machine learning model Dialogue: 0,0:13:01.32,0:13:03.54,Default,,0000,0000,0000,,using the training data set and you test Dialogue: 0,0:13:03.54,0:13:05.04,Default,,0000,0000,0000,,the machine learning model for Dialogue: 0,0:13:05.04,0:13:07.02,Default,,0000,0000,0000,,performance using the validation data Dialogue: 0,0:13:07.02,0:13:08.10,Default,,0000,0000,0000,,set Dialogue: 0,0:13:08.10,0:13:12.18,Default,,0000,0000,0000,,the third step is performance evaluation Dialogue: 0,0:13:12.18,0:13:14.52,Default,,0000,0000,0000,,um which means comparing how close the Dialogue: 0,0:13:14.52,0:13:16.14,Default,,0000,0000,0000,,model's predictions are to the known Dialogue: 0,0:13:16.14,0:13:20.52,Default,,0000,0000,0000,,labels and these lead us to compute some Dialogue: 0,0:13:20.52,0:13:23.28,Default,,0000,0000,0000,,evaluation performance metrics Dialogue: 0,0:13:23.28,0:13:25.74,Default,,0000,0000,0000,,and then finally Dialogue: 0,0:13:25.74,0:13:29.88,Default,,0000,0000,0000,,um so these three steps are not Dialogue: 0,0:13:29.88,0:13:33.00,Default,,0000,0000,0000,,um not performed uh every time in a Dialogue: 0,0:13:33.00,0:13:35.46,Default,,0000,0000,0000,,linear manner it's more an iterative Dialogue: 0,0:13:35.46,0:13:39.42,Default,,0000,0000,0000,,process but once you obtain you achieve Dialogue: 0,0:13:39.42,0:13:42.96,Default,,0000,0000,0000,,a a performance with which you are Dialogue: 0,0:13:42.96,0:13:45.78,Default,,0000,0000,0000,,satisfied so you are ready to let's say Dialogue: 0,0:13:45.78,0:13:48.66,Default,,0000,0000,0000,,go into production and you can deploy Dialogue: 0,0:13:48.66,0:13:51.92,Default,,0000,0000,0000,,your train model as a predictive service Dialogue: 0,0:13:51.92,0:13:55.98,Default,,0000,0000,0000,,into a real-time uh to a real-time Dialogue: 0,0:13:55.98,0:13:58.02,Default,,0000,0000,0000,,endpoint and to do so you need to Dialogue: 0,0:13:58.02,0:14:00.24,Default,,0000,0000,0000,,convert the training pipeline into a Dialogue: 0,0:14:00.24,0:14:02.82,Default,,0000,0000,0000,,real-time inference Pipeline and then Dialogue: 0,0:14:02.82,0:14:04.26,Default,,0000,0000,0000,,you can deploy the model as an Dialogue: 0,0:14:04.26,0:14:06.78,Default,,0000,0000,0000,,application on a server or device so Dialogue: 0,0:14:06.78,0:14:11.42,Default,,0000,0000,0000,,that others can consume this model Dialogue: 0,0:14:11.46,0:14:14.28,Default,,0000,0000,0000,,so let's start with the first step which Dialogue: 0,0:14:14.28,0:14:17.70,Default,,0000,0000,0000,,is prepaid data reward data can contain Dialogue: 0,0:14:17.70,0:14:19.92,Default,,0000,0000,0000,,many different issues that can affect Dialogue: 0,0:14:19.92,0:14:22.32,Default,,0000,0000,0000,,the utility of the data and our Dialogue: 0,0:14:22.32,0:14:24.96,Default,,0000,0000,0000,,interpretation of the results so also Dialogue: 0,0:14:24.96,0:14:26.58,Default,,0000,0000,0000,,the machine learning model that you Dialogue: 0,0:14:26.58,0:14:29.40,Default,,0000,0000,0000,,train using this data for example real Dialogue: 0,0:14:29.40,0:14:31.44,Default,,0000,0000,0000,,world data can be affected by a bed Dialogue: 0,0:14:31.44,0:14:34.08,Default,,0000,0000,0000,,recording or a bad measurement and it Dialogue: 0,0:14:34.08,0:14:36.48,Default,,0000,0000,0000,,can also contain missing values for some Dialogue: 0,0:14:36.48,0:14:38.88,Default,,0000,0000,0000,,parameters and Azure machine learning Dialogue: 0,0:14:38.88,0:14:40.86,Default,,0000,0000,0000,,designer has several pre-built Dialogue: 0,0:14:40.86,0:14:43.02,Default,,0000,0000,0000,,components that can be used to prepaid Dialogue: 0,0:14:43.02,0:14:46.08,Default,,0000,0000,0000,,data for training these components Dialogue: 0,0:14:46.08,0:14:48.30,Default,,0000,0000,0000,,enable you to clean data normalize Dialogue: 0,0:14:48.30,0:14:52.94,Default,,0000,0000,0000,,features join tables and and more Dialogue: 0,0:14:53.00,0:14:57.12,Default,,0000,0000,0000,,let's come to uh training so to train a Dialogue: 0,0:14:57.12,0:14:59.22,Default,,0000,0000,0000,,classification model you need a data set Dialogue: 0,0:14:59.22,0:15:02.16,Default,,0000,0000,0000,,that includes historical features so the Dialogue: 0,0:15:02.16,0:15:03.90,Default,,0000,0000,0000,,characteristics of the entity for which Dialogue: 0,0:15:03.90,0:15:06.90,Default,,0000,0000,0000,,one to make a prediction and known label Dialogue: 0,0:15:06.90,0:15:09.78,Default,,0000,0000,0000,,values the label is the class indicator Dialogue: 0,0:15:09.78,0:15:11.82,Default,,0000,0000,0000,,we want to train a model to predict it Dialogue: 0,0:15:11.82,0:15:13.92,Default,,0000,0000,0000,,and it's common practice to train a Dialogue: 0,0:15:13.92,0:15:16.20,Default,,0000,0000,0000,,model using a subset of the data while Dialogue: 0,0:15:16.20,0:15:18.30,Default,,0000,0000,0000,,holding back some data with which to Dialogue: 0,0:15:18.30,0:15:20.76,Default,,0000,0000,0000,,test the train model and this enables Dialogue: 0,0:15:20.76,0:15:22.44,Default,,0000,0000,0000,,you to compare the labels that the model Dialogue: 0,0:15:22.44,0:15:25.38,Default,,0000,0000,0000,,predicts with the actual known labels in Dialogue: 0,0:15:25.38,0:15:27.42,Default,,0000,0000,0000,,the original data set Dialogue: 0,0:15:27.42,0:15:29.88,Default,,0000,0000,0000,,this operation can be performed in the Dialogue: 0,0:15:29.88,0:15:32.10,Default,,0000,0000,0000,,designer using the split data component Dialogue: 0,0:15:32.10,0:15:34.74,Default,,0000,0000,0000,,as shown by the screenshot here in the Dialogue: 0,0:15:34.74,0:15:36.66,Default,,0000,0000,0000,,in the deck Dialogue: 0,0:15:36.66,0:15:39.54,Default,,0000,0000,0000,,there's also another component that you Dialogue: 0,0:15:39.54,0:15:40.98,Default,,0000,0000,0000,,should use which is the score model Dialogue: 0,0:15:40.98,0:15:43.14,Default,,0000,0000,0000,,component to generate the predicted Dialogue: 0,0:15:43.14,0:15:45.36,Default,,0000,0000,0000,,class label value using the validation Dialogue: 0,0:15:45.36,0:15:48.06,Default,,0000,0000,0000,,data as input so once you connect all Dialogue: 0,0:15:48.06,0:15:49.80,Default,,0000,0000,0000,,these components Dialogue: 0,0:15:49.80,0:15:52.44,Default,,0000,0000,0000,,um the component specifying the the Dialogue: 0,0:15:52.44,0:15:54.96,Default,,0000,0000,0000,,model we are going to use the split data Dialogue: 0,0:15:54.96,0:15:57.06,Default,,0000,0000,0000,,component the trained model component Dialogue: 0,0:15:57.06,0:16:00.30,Default,,0000,0000,0000,,and the score model component you want Dialogue: 0,0:16:00.30,0:16:02.64,Default,,0000,0000,0000,,to run an a new experiment in the Dialogue: 0,0:16:02.64,0:16:05.76,Default,,0000,0000,0000,,initial map which will use the data set Dialogue: 0,0:16:05.76,0:16:09.60,Default,,0000,0000,0000,,on the canvas to train and score a model Dialogue: 0,0:16:09.60,0:16:12.00,Default,,0000,0000,0000,,after training a model it is important Dialogue: 0,0:16:12.00,0:16:14.64,Default,,0000,0000,0000,,we say to evaluate its performance to Dialogue: 0,0:16:14.64,0:16:17.06,Default,,0000,0000,0000,,understand how bad how how good sorry Dialogue: 0,0:16:17.06,0:16:20.76,Default,,0000,0000,0000,,our model is performing Dialogue: 0,0:16:20.76,0:16:22.68,Default,,0000,0000,0000,,and there are many performance metrics Dialogue: 0,0:16:22.68,0:16:24.60,Default,,0000,0000,0000,,and methodologies for evaluating how Dialogue: 0,0:16:24.60,0:16:27.00,Default,,0000,0000,0000,,well a model makes predictions the Dialogue: 0,0:16:27.00,0:16:29.16,Default,,0000,0000,0000,,component to use to perform evaluation Dialogue: 0,0:16:29.16,0:16:32.22,Default,,0000,0000,0000,,in Azure ml designer is called as Dialogue: 0,0:16:32.22,0:16:35.06,Default,,0000,0000,0000,,intuitive as it is evaluate model Dialogue: 0,0:16:35.06,0:16:38.34,Default,,0000,0000,0000,,once the job of training and evaluation Dialogue: 0,0:16:38.34,0:16:40.74,Default,,0000,0000,0000,,of the model is completed you can review Dialogue: 0,0:16:40.74,0:16:42.96,Default,,0000,0000,0000,,evaluation metrics on the completed job Dialogue: 0,0:16:42.96,0:16:45.86,Default,,0000,0000,0000,,Page by right clicking on the component Dialogue: 0,0:16:45.86,0:16:48.48,Default,,0000,0000,0000,,in the evaluation results you can also Dialogue: 0,0:16:48.48,0:16:51.00,Default,,0000,0000,0000,,find the so-called confusion Matrix that Dialogue: 0,0:16:51.00,0:16:53.40,Default,,0000,0000,0000,,you can see here in the right side of of Dialogue: 0,0:16:53.40,0:16:55.08,Default,,0000,0000,0000,,this deck Dialogue: 0,0:16:55.08,0:16:57.42,Default,,0000,0000,0000,,a confusion Matrix shows cases where Dialogue: 0,0:16:57.42,0:16:59.22,Default,,0000,0000,0000,,both the predicted and actual values Dialogue: 0,0:16:59.22,0:17:01.98,Default,,0000,0000,0000,,were one uh the so-called true positives Dialogue: 0,0:17:01.98,0:17:04.50,Default,,0000,0000,0000,,at the top left and also cases where Dialogue: 0,0:17:04.50,0:17:06.60,Default,,0000,0000,0000,,both the predicted and the actual values Dialogue: 0,0:17:06.60,0:17:08.46,Default,,0000,0000,0000,,were zero the so-called true negatives Dialogue: 0,0:17:08.46,0:17:10.92,Default,,0000,0000,0000,,at the bottom right while the other Dialogue: 0,0:17:10.92,0:17:13.68,Default,,0000,0000,0000,,cells show cases where the predicting Dialogue: 0,0:17:13.68,0:17:15.38,Default,,0000,0000,0000,,and actual values differ Dialogue: 0,0:17:15.38,0:17:17.94,Default,,0000,0000,0000,,called false positive and false Dialogue: 0,0:17:17.94,0:17:19.92,Default,,0000,0000,0000,,negatives and this is an example of a Dialogue: 0,0:17:19.92,0:17:23.58,Default,,0000,0000,0000,,confusion Matrix for a binary classifier Dialogue: 0,0:17:23.58,0:17:25.56,Default,,0000,0000,0000,,why for a multi-class classification Dialogue: 0,0:17:25.56,0:17:28.08,Default,,0000,0000,0000,,model the same approach is used to Dialogue: 0,0:17:28.08,0:17:30.12,Default,,0000,0000,0000,,tabulate each possible combination of Dialogue: 0,0:17:30.12,0:17:32.94,Default,,0000,0000,0000,,actual and predictive value counts so Dialogue: 0,0:17:32.94,0:17:34.74,Default,,0000,0000,0000,,for example a model with three possible Dialogue: 0,0:17:34.74,0:17:37.56,Default,,0000,0000,0000,,classes would result in three times Dialogue: 0,0:17:37.56,0:17:39.12,Default,,0000,0000,0000,,three Matrix Dialogue: 0,0:17:39.12,0:17:41.88,Default,,0000,0000,0000,,the confusion Matrix is also useful for Dialogue: 0,0:17:41.88,0:17:43.86,Default,,0000,0000,0000,,the metrics that can be derived from it Dialogue: 0,0:17:43.86,0:17:48.26,Default,,0000,0000,0000,,like accuracy recall or precision Dialogue: 0,0:17:49.32,0:17:52.08,Default,,0000,0000,0000,,um we we say that the last step is Dialogue: 0,0:17:52.08,0:17:55.62,Default,,0000,0000,0000,,deploying the train model to a real-time Dialogue: 0,0:17:55.62,0:17:59.28,Default,,0000,0000,0000,,endpoint as a predictive service and in Dialogue: 0,0:17:59.28,0:18:00.90,Default,,0000,0000,0000,,order to automate your model into Dialogue: 0,0:18:00.90,0:18:02.76,Default,,0000,0000,0000,,service that makes continuous Dialogue: 0,0:18:02.76,0:18:04.98,Default,,0000,0000,0000,,predictions you need first of all to Dialogue: 0,0:18:04.98,0:18:08.04,Default,,0000,0000,0000,,create any and and then deploy an Dialogue: 0,0:18:08.04,0:18:10.08,Default,,0000,0000,0000,,inference pipeline the process of Dialogue: 0,0:18:10.08,0:18:11.94,Default,,0000,0000,0000,,converting the training pipeline into a Dialogue: 0,0:18:11.94,0:18:13.98,Default,,0000,0000,0000,,real-time inference pipeline removes Dialogue: 0,0:18:13.98,0:18:16.26,Default,,0000,0000,0000,,training components and adds web service Dialogue: 0,0:18:16.26,0:18:18.96,Default,,0000,0000,0000,,inputs and outputs to handle requests Dialogue: 0,0:18:18.96,0:18:21.24,Default,,0000,0000,0000,,and the inference pipeline performs they Dialogue: 0,0:18:21.24,0:18:22.68,Default,,0000,0000,0000,,seem that the transformation as the Dialogue: 0,0:18:22.68,0:18:26.16,Default,,0000,0000,0000,,first pipeline but for new data then it Dialogue: 0,0:18:26.16,0:18:28.68,Default,,0000,0000,0000,,uses the train model to infer or predict Dialogue: 0,0:18:28.68,0:18:32.54,Default,,0000,0000,0000,,label values based on its feature Dialogue: 0,0:18:32.82,0:18:36.12,Default,,0000,0000,0000,,um so I think I've talked a lot for now Dialogue: 0,0:18:36.12,0:18:40.38,Default,,0000,0000,0000,,I would like to let John show us Dialogue: 0,0:18:40.38,0:18:44.34,Default,,0000,0000,0000,,something in practice uh with uh with Dialogue: 0,0:18:44.34,0:18:47.28,Default,,0000,0000,0000,,the Hands-On demo so please John go Dialogue: 0,0:18:47.28,0:18:49.86,Default,,0000,0000,0000,,ahead sharing your screen and guide us Dialogue: 0,0:18:49.86,0:18:52.38,Default,,0000,0000,0000,,through this demo of creating a Dialogue: 0,0:18:52.38,0:18:53.76,Default,,0000,0000,0000,,classification with the Azure machine Dialogue: 0,0:18:53.76,0:18:55.86,Default,,0000,0000,0000,,learning designer Dialogue: 0,0:18:55.86,0:18:58.92,Default,,0000,0000,0000,,uh thank you so much Carlotta for this Dialogue: 0,0:18:58.92,0:19:01.38,Default,,0000,0000,0000,,interesting explanation of the Azure ml Dialogue: 0,0:19:01.38,0:19:04.74,Default,,0000,0000,0000,,designer and now Dialogue: 0,0:19:04.74,0:19:07.50,Default,,0000,0000,0000,,um I'm going to start with you in the Dialogue: 0,0:19:07.50,0:19:10.20,Default,,0000,0000,0000,,Practical demo part so uh if you want to Dialogue: 0,0:19:10.20,0:19:13.32,Default,,0000,0000,0000,,follow along go to the link that Carlota Dialogue: 0,0:19:13.32,0:19:18.38,Default,,0000,0000,0000,,sent in the chat so like you can do Dialogue: 0,0:19:18.38,0:19:21.84,Default,,0000,0000,0000,,the demo or the Practical part with me Dialogue: 0,0:19:21.84,0:19:25.26,Default,,0000,0000,0000,,I'm just going to share my screen Dialogue: 0,0:19:25.26,0:19:27.14,Default,,0000,0000,0000,,and Dialogue: 0,0:19:27.14,0:19:31.56,Default,,0000,0000,0000,,go here so uh Dialogue: 0,0:19:31.56,0:19:34.32,Default,,0000,0000,0000,,where am I right now I'm inside the Dialogue: 0,0:19:34.32,0:19:36.96,Default,,0000,0000,0000,,Microsoft learn documentation this is Dialogue: 0,0:19:36.96,0:19:40.26,Default,,0000,0000,0000,,the exercise part of this module and we Dialogue: 0,0:19:40.26,0:19:43.08,Default,,0000,0000,0000,,will start by setting two things which Dialogue: 0,0:19:43.08,0:19:45.30,Default,,0000,0000,0000,,are a prequisite for us to work inside Dialogue: 0,0:19:45.30,0:19:49.92,Default,,0000,0000,0000,,this module which are the users group Dialogue: 0,0:19:49.92,0:19:52.40,Default,,0000,0000,0000,,and the Azure machine learning workspace Dialogue: 0,0:19:52.40,0:19:55.62,Default,,0000,0000,0000,,and something extra which is the compute Dialogue: 0,0:19:55.62,0:19:59.76,Default,,0000,0000,0000,,cluster that calendar Target about so I Dialogue: 0,0:19:59.76,0:20:02.10,Default,,0000,0000,0000,,just want to make sure that you all have Dialogue: 0,0:20:02.10,0:20:05.66,Default,,0000,0000,0000,,a resource Group created inside your Dialogue: 0,0:20:05.66,0:20:08.04,Default,,0000,0000,0000,,auditor inside your Microsoft Azure Dialogue: 0,0:20:08.04,0:20:11.10,Default,,0000,0000,0000,,platform so this is my research group Dialogue: 0,0:20:11.10,0:20:14.64,Default,,0000,0000,0000,,inside this is this Resource Group I Dialogue: 0,0:20:14.64,0:20:17.30,Default,,0000,0000,0000,,have created an Azure machine learning Dialogue: 0,0:20:17.30,0:20:21.54,Default,,0000,0000,0000,,workspace so I'm just going to access Dialogue: 0,0:20:21.54,0:20:24.00,Default,,0000,0000,0000,,the workspace that I have created Dialogue: 0,0:20:24.00,0:20:27.00,Default,,0000,0000,0000,,already from this link I am going to Dialogue: 0,0:20:27.00,0:20:30.24,Default,,0000,0000,0000,,open it which is the studio web URL and Dialogue: 0,0:20:30.24,0:20:33.00,Default,,0000,0000,0000,,I will follow the steps so what is this Dialogue: 0,0:20:33.00,0:20:35.76,Default,,0000,0000,0000,,this is your machine learning workspace Dialogue: 0,0:20:35.76,0:20:38.22,Default,,0000,0000,0000,,or machine Learning Studio you can do a Dialogue: 0,0:20:38.22,0:20:40.08,Default,,0000,0000,0000,,lot of things here but we are going to Dialogue: 0,0:20:40.08,0:20:42.42,Default,,0000,0000,0000,,focus mainly on the designer and the Dialogue: 0,0:20:42.42,0:20:46.08,Default,,0000,0000,0000,,data and the compute so another Dialogue: 0,0:20:46.08,0:20:49.14,Default,,0000,0000,0000,,prequisite here as Carlotta told you and Dialogue: 0,0:20:49.14,0:20:51.48,Default,,0000,0000,0000,,we need some resources to power up the Dialogue: 0,0:20:51.48,0:20:54.30,Default,,0000,0000,0000,,the classification the processes that Dialogue: 0,0:20:54.30,0:20:55.14,Default,,0000,0000,0000,,will happen Dialogue: 0,0:20:55.14,0:20:58.08,Default,,0000,0000,0000,,so we have created this Computing Dialogue: 0,0:20:58.08,0:20:59.10,Default,,0000,0000,0000,,cluster Dialogue: 0,0:20:59.10,0:21:02.88,Default,,0000,0000,0000,,and we have like Set uh some presets for Dialogue: 0,0:21:02.88,0:21:04.14,Default,,0000,0000,0000,,it so Dialogue: 0,0:21:04.14,0:21:07.08,Default,,0000,0000,0000,,where can you find this preset you go Dialogue: 0,0:21:07.08,0:21:10.20,Default,,0000,0000,0000,,here under the create compute you'll Dialogue: 0,0:21:10.20,0:21:13.22,Default,,0000,0000,0000,,find everything that you need to do so Dialogue: 0,0:21:13.22,0:21:16.74,Default,,0000,0000,0000,,the size is the Standard ds11 Version 2 Dialogue: 0,0:21:16.74,0:21:19.80,Default,,0000,0000,0000,,and it's a CPU not GPU because we don't Dialogue: 0,0:21:19.80,0:21:22.50,Default,,0000,0000,0000,,know the GPU and we don't need a GPU and Dialogue: 0,0:21:22.50,0:21:25.80,Default,,0000,0000,0000,,a like it is ready for us to use Dialogue: 0,0:21:25.80,0:21:30.90,Default,,0000,0000,0000,,the next thing which we will look into Dialogue: 0,0:21:30.90,0:21:33.60,Default,,0000,0000,0000,,is the designer how can you access the Dialogue: 0,0:21:33.60,0:21:35.10,Default,,0000,0000,0000,,designer Dialogue: 0,0:21:35.10,0:21:37.68,Default,,0000,0000,0000,,you can either click on this icon or Dialogue: 0,0:21:37.68,0:21:40.02,Default,,0000,0000,0000,,click on the navigation menu and click Dialogue: 0,0:21:40.02,0:21:42.30,Default,,0000,0000,0000,,on the designer for me Dialogue: 0,0:21:42.30,0:21:42.90,Default,,0000,0000,0000,,um Dialogue: 0,0:21:42.90,0:21:45.78,Default,,0000,0000,0000,,now I am inside my designer Dialogue: 0,0:21:45.78,0:21:47.64,Default,,0000,0000,0000,,what we are going to do now is the Dialogue: 0,0:21:47.64,0:21:50.28,Default,,0000,0000,0000,,pipeline that Carlotta told you about Dialogue: 0,0:21:50.28,0:21:54.36,Default,,0000,0000,0000,,and from where can I know these steps if Dialogue: 0,0:21:54.36,0:21:57.12,Default,,0000,0000,0000,,you follow along in the learn module you Dialogue: 0,0:21:57.12,0:21:58.74,Default,,0000,0000,0000,,will find everything that I'm doing Dialogue: 0,0:21:58.74,0:22:02.34,Default,,0000,0000,0000,,right now in details uh with screenshots Dialogue: 0,0:22:02.34,0:22:05.82,Default,,0000,0000,0000,,of course so I'm going to create a new Dialogue: 0,0:22:05.82,0:22:09.12,Default,,0000,0000,0000,,pipeline and I can do so by clicking on Dialogue: 0,0:22:09.12,0:22:10.98,Default,,0000,0000,0000,,this plus button Dialogue: 0,0:22:10.98,0:22:13.74,Default,,0000,0000,0000,,it's going to redirect me to the Dialogue: 0,0:22:13.74,0:22:17.10,Default,,0000,0000,0000,,designer authoring the pipeline uh where Dialogue: 0,0:22:17.10,0:22:19.50,Default,,0000,0000,0000,,I can drag and drop data and components Dialogue: 0,0:22:19.50,0:22:21.78,Default,,0000,0000,0000,,that the Carlota told you the difference Dialogue: 0,0:22:21.78,0:22:22.98,Default,,0000,0000,0000,,between Dialogue: 0,0:22:22.98,0:22:26.34,Default,,0000,0000,0000,,and here I am going to do some changes Dialogue: 0,0:22:26.34,0:22:29.10,Default,,0000,0000,0000,,to the settings I am going to connect Dialogue: 0,0:22:29.10,0:22:31.86,Default,,0000,0000,0000,,this with my compute cluster that I Dialogue: 0,0:22:31.86,0:22:35.12,Default,,0000,0000,0000,,created previously so I can utilize it Dialogue: 0,0:22:35.12,0:22:38.10,Default,,0000,0000,0000,,from here I'm going to choose this Dialogue: 0,0:22:38.10,0:22:40.38,Default,,0000,0000,0000,,compute cluster demo that I have showed Dialogue: 0,0:22:40.38,0:22:42.60,Default,,0000,0000,0000,,you before in the Clusters here Dialogue: 0,0:22:42.60,0:22:45.90,Default,,0000,0000,0000,,and I am going to change the name to Dialogue: 0,0:22:45.90,0:22:47.82,Default,,0000,0000,0000,,something more meaningful instead of Dialogue: 0,0:22:47.82,0:22:50.58,Default,,0000,0000,0000,,byline and the date of today I'm going Dialogue: 0,0:22:50.58,0:22:53.76,Default,,0000,0000,0000,,to name it diabetes Dialogue: 0,0:22:53.76,0:22:56.12,Default,,0000,0000,0000,,and Dialogue: 0,0:22:56.12,0:23:00.02,Default,,0000,0000,0000,,let's just check this training Dialogue: 0,0:23:00.02,0:23:05.10,Default,,0000,0000,0000,,let's say training 0.1 or okay Dialogue: 0,0:23:05.10,0:23:09.36,Default,,0000,0000,0000,,and I am going to close this tab and in Dialogue: 0,0:23:09.36,0:23:12.00,Default,,0000,0000,0000,,order to have a bigger place to work Dialogue: 0,0:23:12.00,0:23:14.70,Default,,0000,0000,0000,,inside because this is where we will Dialogue: 0,0:23:14.70,0:23:17.22,Default,,0000,0000,0000,,work where everything will happen so I Dialogue: 0,0:23:17.22,0:23:19.56,Default,,0000,0000,0000,,will click on close from here Dialogue: 0,0:23:19.56,0:23:23.46,Default,,0000,0000,0000,,and I will go to the data and I will Dialogue: 0,0:23:23.46,0:23:25.62,Default,,0000,0000,0000,,create a new data set Dialogue: 0,0:23:25.62,0:23:27.90,Default,,0000,0000,0000,,how can I create a new data set there is Dialogue: 0,0:23:27.90,0:23:29.88,Default,,0000,0000,0000,,multiple options here you can find from Dialogue: 0,0:23:29.88,0:23:31.80,Default,,0000,0000,0000,,local files from data store from web Dialogue: 0,0:23:31.80,0:23:34.02,Default,,0000,0000,0000,,files from open data set but I'm going Dialogue: 0,0:23:34.02,0:23:36.54,Default,,0000,0000,0000,,to choose from web files as this is the Dialogue: 0,0:23:36.54,0:23:40.28,Default,,0000,0000,0000,,way we're going to create our data Dialogue: 0,0:23:40.28,0:23:43.38,Default,,0000,0000,0000,,from here the information of my data set Dialogue: 0,0:23:43.38,0:23:47.34,Default,,0000,0000,0000,,I'm going to get them from the Microsoft Dialogue: 0,0:23:47.34,0:23:50.82,Default,,0000,0000,0000,,learn module so if we go to the step Dialogue: 0,0:23:50.82,0:23:52.86,Default,,0000,0000,0000,,that says create a data set Dialogue: 0,0:23:52.86,0:23:55.02,Default,,0000,0000,0000,,under it it illustrates that you can Dialogue: 0,0:23:55.02,0:23:57.72,Default,,0000,0000,0000,,access the data from inside the asset Dialogue: 0,0:23:57.72,0:23:59.76,Default,,0000,0000,0000,,library and inside your asset liability Dialogue: 0,0:23:59.76,0:24:01.68,Default,,0000,0000,0000,,you'll find the data and find the Dialogue: 0,0:24:01.68,0:24:05.54,Default,,0000,0000,0000,,component and I'm going to select Dialogue: 0,0:24:05.54,0:24:09.00,Default,,0000,0000,0000,,this link because this is where my data Dialogue: 0,0:24:09.00,0:24:12.00,Default,,0000,0000,0000,,is stored if you open this link you will Dialogue: 0,0:24:12.00,0:24:14.82,Default,,0000,0000,0000,,find this is this is a CSV file I think Dialogue: 0,0:24:14.82,0:24:17.40,Default,,0000,0000,0000,,yeah and you can like all the data are Dialogue: 0,0:24:17.40,0:24:18.36,Default,,0000,0000,0000,,here Dialogue: 0,0:24:18.36,0:24:21.42,Default,,0000,0000,0000,,all right now let's get back Dialogue: 0,0:24:21.42,0:24:21.54,Default,,0000,0000,0000,,um Dialogue: 0,0:24:21.54,0:24:24.77,Default,,0000,0000,0000,,[Music] Dialogue: 0,0:24:26.88,0:24:28.20,Default,,0000,0000,0000,,and you are going to do something Dialogue: 0,0:24:28.20,0:24:29.88,Default,,0000,0000,0000,,meaningful but because I have already Dialogue: 0,0:24:29.88,0:24:31.82,Default,,0000,0000,0000,,created it before twice so I'm gonna Dialogue: 0,0:24:31.82,0:24:34.98,Default,,0000,0000,0000,,like add a number to the name Dialogue: 0,0:24:34.98,0:24:37.56,Default,,0000,0000,0000,,uh the data set is tabular and there is Dialogue: 0,0:24:37.56,0:24:39.36,Default,,0000,0000,0000,,the file but this is a table so we're Dialogue: 0,0:24:39.36,0:24:40.76,Default,,0000,0000,0000,,going to choose the table Dialogue: 0,0:24:40.76,0:24:42.24,Default,,0000,0000,0000,,[Music] Dialogue: 0,0:24:42.24,0:24:43.74,Default,,0000,0000,0000,,for data set time Dialogue: 0,0:24:43.74,0:24:46.26,Default,,0000,0000,0000,,now we will click on next that's gonna Dialogue: 0,0:24:46.26,0:24:51.18,Default,,0000,0000,0000,,review or uh display for you the content Dialogue: 0,0:24:51.18,0:24:54.02,Default,,0000,0000,0000,,of this file that you have Dialogue: 0,0:24:54.02,0:24:57.42,Default,,0000,0000,0000,,like imported to this workspace Dialogue: 0,0:24:57.42,0:25:01.56,Default,,0000,0000,0000,,and for these settings these are like Dialogue: 0,0:25:01.56,0:25:03.72,Default,,0000,0000,0000,,related to our filed format Dialogue: 0,0:25:03.72,0:25:08.28,Default,,0000,0000,0000,,so this is a delimited file and it's not Dialogue: 0,0:25:08.28,0:25:11.40,Default,,0000,0000,0000,,plain text it's not a Json the delimiter Dialogue: 0,0:25:11.40,0:25:14.16,Default,,0000,0000,0000,,is comma as like we have seen that they Dialogue: 0,0:25:14.16,0:25:16.64,Default,,0000,0000,0000,,those Dialogue: 0,0:25:26.70,0:25:29.04,Default,,0000,0000,0000,,so I'm choosing Dialogue: 0,0:25:29.04,0:25:32.90,Default,,0000,0000,0000,,errors because the only the first five Dialogue: 0,0:25:33.51,0:25:34.88,Default,,0000,0000,0000,,[Music] Dialogue: 0,0:25:34.88,0:25:38.16,Default,,0000,0000,0000,,for example okay uh if you have any Dialogue: 0,0:25:38.16,0:25:39.96,Default,,0000,0000,0000,,doubts if you have any problems please Dialogue: 0,0:25:39.96,0:25:42.96,Default,,0000,0000,0000,,don't hesitate to all right through me Dialogue: 0,0:25:42.96,0:25:45.02,Default,,0000,0000,0000,,in the chat Dialogue: 0,0:25:45.02,0:25:48.48,Default,,0000,0000,0000,,and like what what is blocking you and Dialogue: 0,0:25:48.48,0:25:50.94,Default,,0000,0000,0000,,me and Carlota will try to help you and Dialogue: 0,0:25:50.94,0:25:53.22,Default,,0000,0000,0000,,like whenever possible Dialogue: 0,0:25:53.22,0:25:55.80,Default,,0000,0000,0000,,and now this is the new preview for my Dialogue: 0,0:25:55.80,0:25:57.84,Default,,0000,0000,0000,,data set I can see that I have an ID I Dialogue: 0,0:25:57.84,0:25:59.70,Default,,0000,0000,0000,,have patient ID I have pregnancies I Dialogue: 0,0:25:59.70,0:26:02.22,Default,,0000,0000,0000,,have the age of the people Dialogue: 0,0:26:02.22,0:26:05.72,Default,,0000,0000,0000,,have the body mass together I think Dialogue: 0,0:26:05.72,0:26:08.46,Default,,0000,0000,0000,,and they have diabetical or not as a Dialogue: 0,0:26:08.46,0:26:10.68,Default,,0000,0000,0000,,zero and one zero indicates a negative Dialogue: 0,0:26:10.68,0:26:14.16,Default,,0000,0000,0000,,the person doesn't have diabetes and one Dialogue: 0,0:26:14.16,0:26:16.08,Default,,0000,0000,0000,,indicates a positive that this person Dialogue: 0,0:26:16.08,0:26:18.30,Default,,0000,0000,0000,,has diabetes okay Dialogue: 0,0:26:18.30,0:26:20.52,Default,,0000,0000,0000,,now I'm going to click on next here I am Dialogue: 0,0:26:20.52,0:26:23.40,Default,,0000,0000,0000,,defining my schema all the data types Dialogue: 0,0:26:23.40,0:26:25.38,Default,,0000,0000,0000,,inside my columns the column names which Dialogue: 0,0:26:25.38,0:26:28.76,Default,,0000,0000,0000,,columns to include which to exclude and Dialogue: 0,0:26:28.76,0:26:31.50,Default,,0000,0000,0000,,here we will include everything except Dialogue: 0,0:26:31.50,0:26:35.58,Default,,0000,0000,0000,,the path of the bath color and we are Dialogue: 0,0:26:35.58,0:26:37.86,Default,,0000,0000,0000,,going to review the data types of each Dialogue: 0,0:26:37.86,0:26:40.44,Default,,0000,0000,0000,,column so let's review this first one Dialogue: 0,0:26:40.44,0:26:43.32,Default,,0000,0000,0000,,this is numbers numbers then it's the Dialogue: 0,0:26:43.32,0:26:45.78,Default,,0000,0000,0000,,integer and this is Dialogue: 0,0:26:45.78,0:26:48.68,Default,,0000,0000,0000,,um like decimal Dialogue: 0,0:26:48.68,0:26:50.90,Default,,0000,0000,0000,,dotted Dialogue: 0,0:26:50.90,0:26:53.58,Default,,0000,0000,0000,,decimal number so we are going to choose Dialogue: 0,0:26:53.58,0:26:55.02,Default,,0000,0000,0000,,this data type Dialogue: 0,0:26:55.02,0:26:57.20,Default,,0000,0000,0000,,and for this one Dialogue: 0,0:26:57.20,0:27:01.20,Default,,0000,0000,0000,,it says diabetic and it's a zero under Dialogue: 0,0:27:01.20,0:27:02.46,Default,,0000,0000,0000,,one and we are going to make it as Dialogue: 0,0:27:02.46,0:27:04.46,Default,,0000,0000,0000,,integerables Dialogue: 0,0:27:04.46,0:27:07.98,Default,,0000,0000,0000,,now we are going to click on next and Dialogue: 0,0:27:07.98,0:27:10.08,Default,,0000,0000,0000,,move to reviewing everything this is Dialogue: 0,0:27:10.08,0:27:11.28,Default,,0000,0000,0000,,everything that we have defined together Dialogue: 0,0:27:11.28,0:27:13.50,Default,,0000,0000,0000,,I will click on create Dialogue: 0,0:27:13.50,0:27:15.18,Default,,0000,0000,0000,,and Dialogue: 0,0:27:15.18,0:27:17.94,Default,,0000,0000,0000,,now the first step has ended we have Dialogue: 0,0:27:17.94,0:27:19.92,Default,,0000,0000,0000,,gotten our data ready Dialogue: 0,0:27:19.92,0:27:22.44,Default,,0000,0000,0000,,now what now we're going to utilize the Dialogue: 0,0:27:22.44,0:27:24.36,Default,,0000,0000,0000,,designer Dialogue: 0,0:27:24.36,0:27:26.82,Default,,0000,0000,0000,,um Power we're going to drag and drop Dialogue: 0,0:27:26.82,0:27:29.82,Default,,0000,0000,0000,,our data set to create the pipeline Dialogue: 0,0:27:29.82,0:27:33.18,Default,,0000,0000,0000,,so I have like click on it and drag it Dialogue: 0,0:27:33.18,0:27:35.64,Default,,0000,0000,0000,,to this space it's gonna appear to you Dialogue: 0,0:27:35.64,0:27:39.66,Default,,0000,0000,0000,,and we can inspect it by right click and Dialogue: 0,0:27:39.66,0:27:42.18,Default,,0000,0000,0000,,choose preview data Dialogue: 0,0:27:42.18,0:27:46.20,Default,,0000,0000,0000,,to see what we have created together Dialogue: 0,0:27:46.20,0:27:48.90,Default,,0000,0000,0000,,from here you can see everything that we Dialogue: 0,0:27:48.90,0:27:50.70,Default,,0000,0000,0000,,have like seen previously but in more Dialogue: 0,0:27:50.70,0:27:53.10,Default,,0000,0000,0000,,details and we are just going to close Dialogue: 0,0:27:53.10,0:27:56.58,Default,,0000,0000,0000,,this now what now we are gonna do the Dialogue: 0,0:27:56.58,0:28:00.80,Default,,0000,0000,0000,,processing that Carlota like mentioned Dialogue: 0,0:28:00.80,0:28:03.66,Default,,0000,0000,0000,,these are some instructions about the Dialogue: 0,0:28:03.66,0:28:05.46,Default,,0000,0000,0000,,data about how you can loot them how you Dialogue: 0,0:28:05.46,0:28:07.14,Default,,0000,0000,0000,,can open them but we are going to move Dialogue: 0,0:28:07.14,0:28:09.72,Default,,0000,0000,0000,,to the transformation or the processing Dialogue: 0,0:28:09.72,0:28:13.50,Default,,0000,0000,0000,,so as Carlotta told you like any data Dialogue: 0,0:28:13.50,0:28:15.48,Default,,0000,0000,0000,,for us to work on we have to do some Dialogue: 0,0:28:15.48,0:28:17.30,Default,,0000,0000,0000,,processing to it Dialogue: 0,0:28:17.30,0:28:20.16,Default,,0000,0000,0000,,to make it easy easier for the model to Dialogue: 0,0:28:20.16,0:28:23.28,Default,,0000,0000,0000,,be trained and easier to work with so uh Dialogue: 0,0:28:23.28,0:28:25.86,Default,,0000,0000,0000,,we're gonna do the normalization and Dialogue: 0,0:28:25.86,0:28:29.16,Default,,0000,0000,0000,,normalization meaning is uh Dialogue: 0,0:28:29.16,0:28:33.54,Default,,0000,0000,0000,,to scale our data either down or up but Dialogue: 0,0:28:33.54,0:28:35.40,Default,,0000,0000,0000,,we're going to scale them down Dialogue: 0,0:28:35.40,0:28:38.82,Default,,0000,0000,0000,,and like we are going to decrease and Dialogue: 0,0:28:38.82,0:28:40.80,Default,,0000,0000,0000,,relatively decrease Dialogue: 0,0:28:40.80,0:28:44.64,Default,,0000,0000,0000,,the the values all the values to work Dialogue: 0,0:28:44.64,0:28:48.12,Default,,0000,0000,0000,,with lower numbers and if we are working Dialogue: 0,0:28:48.12,0:28:49.56,Default,,0000,0000,0000,,with larger numbers it's going to take Dialogue: 0,0:28:49.56,0:28:52.50,Default,,0000,0000,0000,,more time if we're working with smaller Dialogue: 0,0:28:52.50,0:28:54.78,Default,,0000,0000,0000,,numbers it's going to take less time to Dialogue: 0,0:28:54.78,0:28:59.16,Default,,0000,0000,0000,,calculate them and that's it so Dialogue: 0,0:28:59.16,0:29:02.16,Default,,0000,0000,0000,,where can I find the normalized data I Dialogue: 0,0:29:02.16,0:29:04.26,Default,,0000,0000,0000,,can find it inside my component Dialogue: 0,0:29:04.26,0:29:06.72,Default,,0000,0000,0000,,so I will choose the component and Dialogue: 0,0:29:06.72,0:29:09.66,Default,,0000,0000,0000,,search for normalized data Dialogue: 0,0:29:09.66,0:29:12.36,Default,,0000,0000,0000,,I will drag and drop it as usual and I Dialogue: 0,0:29:12.36,0:29:14.82,Default,,0000,0000,0000,,will connect between these two things Dialogue: 0,0:29:14.82,0:29:18.36,Default,,0000,0000,0000,,by clicking on this spot this like Dialogue: 0,0:29:18.36,0:29:20.16,Default,,0000,0000,0000,,Circle and Dialogue: 0,0:29:20.16,0:29:23.16,Default,,0000,0000,0000,,drag and drop until the next circuit Dialogue: 0,0:29:23.16,0:29:24.90,Default,,0000,0000,0000,,now we are going to Define our Dialogue: 0,0:29:24.90,0:29:27.42,Default,,0000,0000,0000,,normalization method Dialogue: 0,0:29:27.42,0:29:31.08,Default,,0000,0000,0000,,so I'm going to double click on the Dialogue: 0,0:29:31.08,0:29:32.64,Default,,0000,0000,0000,,normalized data Dialogue: 0,0:29:32.64,0:29:34.86,Default,,0000,0000,0000,,it's going to open the settings for the Dialogue: 0,0:29:34.86,0:29:36.48,Default,,0000,0000,0000,,normalization Dialogue: 0,0:29:36.48,0:29:38.82,Default,,0000,0000,0000,,as better transformation method which is Dialogue: 0,0:29:38.82,0:29:40.50,Default,,0000,0000,0000,,a mathematical way Dialogue: 0,0:29:40.50,0:29:42.30,Default,,0000,0000,0000,,that is going to scale our data Dialogue: 0,0:29:42.30,0:29:44.52,Default,,0000,0000,0000,,according to Dialogue: 0,0:29:44.52,0:29:47.76,Default,,0000,0000,0000,,we're going to choose min max and for Dialogue: 0,0:29:47.76,0:29:51.54,Default,,0000,0000,0000,,this one we are going to choose use 0 Dialogue: 0,0:29:51.54,0:29:53.10,Default,,0000,0000,0000,,for constant column we are going to Dialogue: 0,0:29:53.10,0:29:54.48,Default,,0000,0000,0000,,choose true Dialogue: 0,0:29:54.48,0:29:56.88,Default,,0000,0000,0000,,and we are going to Define which columns Dialogue: 0,0:29:56.88,0:29:58.86,Default,,0000,0000,0000,,to normalize so we are not going to Dialogue: 0,0:29:58.86,0:30:01.08,Default,,0000,0000,0000,,normalize the whole data set we are Dialogue: 0,0:30:01.08,0:30:02.76,Default,,0000,0000,0000,,going to choose a subset from the data Dialogue: 0,0:30:02.76,0:30:04.56,Default,,0000,0000,0000,,set to normalize so we're going to Dialogue: 0,0:30:04.56,0:30:07.02,Default,,0000,0000,0000,,choose everything except for the patient Dialogue: 0,0:30:07.02,0:30:09.00,Default,,0000,0000,0000,,ID and the diabetic because the patient Dialogue: 0,0:30:09.00,0:30:10.92,Default,,0000,0000,0000,,ID is a number but it's a categorical Dialogue: 0,0:30:10.92,0:30:13.74,Default,,0000,0000,0000,,data it describes a vision it's not a Dialogue: 0,0:30:13.74,0:30:17.46,Default,,0000,0000,0000,,number that I can sum I can say patient Dialogue: 0,0:30:17.46,0:30:20.16,Default,,0000,0000,0000,,ID number one plus patient ID number two Dialogue: 0,0:30:20.16,0:30:21.72,Default,,0000,0000,0000,,no this is a patient and another Dialogue: 0,0:30:21.72,0:30:23.40,Default,,0000,0000,0000,,location it's not a number that I can do Dialogue: 0,0:30:23.40,0:30:25.74,Default,,0000,0000,0000,,mathematical operations on so I'm not Dialogue: 0,0:30:25.74,0:30:28.20,Default,,0000,0000,0000,,going to choose it so we will choose Dialogue: 0,0:30:28.20,0:30:30.54,Default,,0000,0000,0000,,everything as I said except for the Dialogue: 0,0:30:30.54,0:30:33.48,Default,,0000,0000,0000,,diabetic and the patient might I will Dialogue: 0,0:30:33.48,0:30:34.86,Default,,0000,0000,0000,,click on Save Dialogue: 0,0:30:34.86,0:30:37.74,Default,,0000,0000,0000,,and it's not showing me a warning again Dialogue: 0,0:30:37.74,0:30:39.48,Default,,0000,0000,0000,,everything is good Dialogue: 0,0:30:39.48,0:30:41.88,Default,,0000,0000,0000,,now I can click on submit Dialogue: 0,0:30:41.88,0:30:46.80,Default,,0000,0000,0000,,and review my normalization output Dialogue: 0,0:30:46.80,0:30:48.24,Default,,0000,0000,0000,,um Dialogue: 0,0:30:48.24,0:30:51.66,Default,,0000,0000,0000,,so uh if you click on submit here Dialogue: 0,0:30:51.66,0:30:54.66,Default,,0000,0000,0000,,and you will like choose create new and Dialogue: 0,0:30:54.66,0:30:56.46,Default,,0000,0000,0000,,set the name that is mentioned here Dialogue: 0,0:30:56.46,0:30:59.90,Default,,0000,0000,0000,,inside the notebook so it it tells you Dialogue: 0,0:30:59.90,0:31:03.42,Default,,0000,0000,0000,,to like create a job and name it name Dialogue: 0,0:31:03.42,0:31:05.46,Default,,0000,0000,0000,,the experiment Ms learn diabetes Dialogue: 0,0:31:05.46,0:31:06.72,Default,,0000,0000,0000,,training because you will continue Dialogue: 0,0:31:06.72,0:31:10.44,Default,,0000,0000,0000,,working on and building component later Dialogue: 0,0:31:10.44,0:31:13.02,Default,,0000,0000,0000,,I have it already like created I am the Dialogue: 0,0:31:13.02,0:31:16.92,Default,,0000,0000,0000,,like we can review it together so uh let Dialogue: 0,0:31:16.92,0:31:19.86,Default,,0000,0000,0000,,me just open this in another tab I think Dialogue: 0,0:31:19.86,0:31:21.00,Default,,0000,0000,0000,,I have it Dialogue: 0,0:31:21.00,0:31:23.66,Default,,0000,0000,0000,,here Dialogue: 0,0:31:25.68,0:31:28.22,Default,,0000,0000,0000,,okay Dialogue: 0,0:31:30.72,0:31:34.74,Default,,0000,0000,0000,,so these are all the jobs that I have Dialogue: 0,0:31:34.74,0:31:37.34,Default,,0000,0000,0000,,read them Dialogue: 0,0:31:37.86,0:31:39.90,Default,,0000,0000,0000,,all the jobs there let's do this over Dialogue: 0,0:31:39.90,0:31:42.06,Default,,0000,0000,0000,,these are all the jobs that I have Dialogue: 0,0:31:42.06,0:31:43.68,Default,,0000,0000,0000,,submitted previously Dialogue: 0,0:31:43.68,0:31:45.84,Default,,0000,0000,0000,,and I think this one is the Dialogue: 0,0:31:45.84,0:31:48.36,Default,,0000,0000,0000,,normalization job so let's see the Dialogue: 0,0:31:48.36,0:31:50.10,Default,,0000,0000,0000,,output of it Dialogue: 0,0:31:50.10,0:31:54.12,Default,,0000,0000,0000,,as you can see it says uh check mark yes Dialogue: 0,0:31:54.12,0:31:56.64,Default,,0000,0000,0000,,which means that it worked and we can Dialogue: 0,0:31:56.64,0:31:59.40,Default,,0000,0000,0000,,preview it how can I do that right click Dialogue: 0,0:31:59.40,0:32:02.54,Default,,0000,0000,0000,,on it choose preview data Dialogue: 0,0:32:02.54,0:32:06.66,Default,,0000,0000,0000,,and as you can see all the data are Dialogue: 0,0:32:06.66,0:32:08.40,Default,,0000,0000,0000,,scaled down Dialogue: 0,0:32:08.40,0:32:10.98,Default,,0000,0000,0000,,so everything is between zero Dialogue: 0,0:32:10.98,0:32:15.86,Default,,0000,0000,0000,,and uh one I think Dialogue: 0,0:32:15.86,0:32:18.90,Default,,0000,0000,0000,,so like everything is good for us now we Dialogue: 0,0:32:18.90,0:32:21.84,Default,,0000,0000,0000,,can move forward to the next step Dialogue: 0,0:32:21.84,0:32:27.80,Default,,0000,0000,0000,,which is to create the whole pipeline so Dialogue: 0,0:32:27.80,0:32:30.84,Default,,0000,0000,0000,,uh Carlota told you that Dialogue: 0,0:32:30.84,0:32:33.18,Default,,0000,0000,0000,,we're going to use a classification Dialogue: 0,0:32:33.18,0:32:37.26,Default,,0000,0000,0000,,model to create this data set so uh let Dialogue: 0,0:32:37.26,0:32:40.62,Default,,0000,0000,0000,,me just drag and drop everything Dialogue: 0,0:32:40.62,0:32:45.38,Default,,0000,0000,0000,,to get runtime and we're doing Dialogue: 0,0:32:45.80,0:32:50.42,Default,,0000,0000,0000,,about about everything by Dialogue: 0,0:32:51.42,0:32:52.92,Default,,0000,0000,0000,,so Dialogue: 0,0:32:52.92,0:32:57.38,Default,,0000,0000,0000,,as a result we are going to explain Dialogue: 0,0:32:59.76,0:33:03.60,Default,,0000,0000,0000,,yeah so I'm going to give this split Dialogue: 0,0:33:03.60,0:33:06.24,Default,,0000,0000,0000,,data I'm going to take the Dialogue: 0,0:33:06.24,0:33:08.88,Default,,0000,0000,0000,,transformation data to split data and Dialogue: 0,0:33:08.88,0:33:10.38,Default,,0000,0000,0000,,connect it like that Dialogue: 0,0:33:10.38,0:33:12.30,Default,,0000,0000,0000,,I'm going to get a three model Dialogue: 0,0:33:12.30,0:33:15.24,Default,,0000,0000,0000,,components because I want to train my Dialogue: 0,0:33:15.24,0:33:16.68,Default,,0000,0000,0000,,model Dialogue: 0,0:33:16.68,0:33:19.74,Default,,0000,0000,0000,,and I'm going to put it right here Dialogue: 0,0:33:19.74,0:33:21.74,Default,,0000,0000,0000,,okay Dialogue: 0,0:33:21.74,0:33:24.42,Default,,0000,0000,0000,,like let's just move it down there okay Dialogue: 0,0:33:24.42,0:33:27.06,Default,,0000,0000,0000,,and we are going to use a classification Dialogue: 0,0:33:27.06,0:33:28.62,Default,,0000,0000,0000,,model Dialogue: 0,0:33:28.62,0:33:31.88,Default,,0000,0000,0000,,a two class Dialogue: 0,0:33:32.24,0:33:35.40,Default,,0000,0000,0000,,logistic regression model Dialogue: 0,0:33:35.40,0:33:38.16,Default,,0000,0000,0000,,so I'm going to give this algorithm to Dialogue: 0,0:33:38.16,0:33:41.48,Default,,0000,0000,0000,,enable my model to work Dialogue: 0,0:33:41.82,0:33:45.96,Default,,0000,0000,0000,,this is the untrained model this is Dialogue: 0,0:33:45.96,0:33:48.06,Default,,0000,0000,0000,,here Dialogue: 0,0:33:48.06,0:33:51.12,Default,,0000,0000,0000,,the left the left Dialogue: 0,0:33:51.12,0:33:52.86,Default,,0000,0000,0000,,the left like Circle I'm going to Dialogue: 0,0:33:52.86,0:33:54.90,Default,,0000,0000,0000,,connect it to the data set and the right Dialogue: 0,0:33:54.90,0:33:56.94,Default,,0000,0000,0000,,one we are going to connect it to Dialogue: 0,0:33:56.94,0:33:59.70,Default,,0000,0000,0000,,evaluate model Dialogue: 0,0:33:59.70,0:34:02.64,Default,,0000,0000,0000,,evaluate model so let's search for Dialogue: 0,0:34:02.64,0:34:05.22,Default,,0000,0000,0000,,evaluate model here Dialogue: 0,0:34:05.22,0:34:07.44,Default,,0000,0000,0000,,so because we want to do what we want to Dialogue: 0,0:34:07.44,0:34:10.80,Default,,0000,0000,0000,,evaluate our model and see how it it has Dialogue: 0,0:34:10.80,0:34:14.58,Default,,0000,0000,0000,,been doing it is it good is it bad Dialogue: 0,0:34:14.58,0:34:18.20,Default,,0000,0000,0000,,um sorry like Dialogue: 0,0:34:19.98,0:34:22.82,Default,,0000,0000,0000,,this is Dialogue: 0,0:34:23.46,0:34:25.56,Default,,0000,0000,0000,,down there Dialogue: 0,0:34:25.56,0:34:28.14,Default,,0000,0000,0000,,after the school Dialogue: 0,0:34:28.14,0:34:31.32,Default,,0000,0000,0000,,so we have to get the score model first Dialogue: 0,0:34:31.32,0:34:33.96,Default,,0000,0000,0000,,so let's get it Dialogue: 0,0:34:33.96,0:34:36.12,Default,,0000,0000,0000,,and this will take the trained model and Dialogue: 0,0:34:36.12,0:34:37.26,Default,,0000,0000,0000,,the data set Dialogue: 0,0:34:37.26,0:34:39.42,Default,,0000,0000,0000,,to score our model and see if it's Dialogue: 0,0:34:39.42,0:34:42.18,Default,,0000,0000,0000,,performing good or bad Dialogue: 0,0:34:42.18,0:34:44.90,Default,,0000,0000,0000,,and Dialogue: 0,0:34:45.24,0:34:47.16,Default,,0000,0000,0000,,um Dialogue: 0,0:34:47.16,0:34:49.08,Default,,0000,0000,0000,,after that like we have finished Dialogue: 0,0:34:49.08,0:34:51.06,Default,,0000,0000,0000,,everything now we are going to do the Dialogue: 0,0:34:51.06,0:34:52.14,Default,,0000,0000,0000,,what Dialogue: 0,0:34:52.14,0:34:54.36,Default,,0000,0000,0000,,the presets for everything Dialogue: 0,0:34:54.36,0:34:56.82,Default,,0000,0000,0000,,as a starter we will be splitting our Dialogue: 0,0:34:56.82,0:34:58.92,Default,,0000,0000,0000,,data so Dialogue: 0,0:34:58.92,0:35:01.14,Default,,0000,0000,0000,,how are we going to do this according to Dialogue: 0,0:35:01.14,0:35:03.78,Default,,0000,0000,0000,,what to the split rules so I'm going to Dialogue: 0,0:35:03.78,0:35:05.94,Default,,0000,0000,0000,,double click on and choose split rows Dialogue: 0,0:35:05.94,0:35:09.42,Default,,0000,0000,0000,,and the percentage is Dialogue: 0,0:35:09.42,0:35:12.78,Default,,0000,0000,0000,,70 percent for the and 30 percent of the Dialogue: 0,0:35:12.78,0:35:14.82,Default,,0000,0000,0000,,data for Dialogue: 0,0:35:14.82,0:35:18.42,Default,,0000,0000,0000,,the valuation or for the scoring okay Dialogue: 0,0:35:18.42,0:35:20.88,Default,,0000,0000,0000,,I'm going to make it a randomization so Dialogue: 0,0:35:20.88,0:35:22.98,Default,,0000,0000,0000,,I'm going to split data randomly and the Dialogue: 0,0:35:22.98,0:35:26.06,Default,,0000,0000,0000,,seat is uh Dialogue: 0,0:35:26.06,0:35:29.34,Default,,0000,0000,0000,,132 23 I think yeah Dialogue: 0,0:35:29.34,0:35:32.52,Default,,0000,0000,0000,,and I think that's it Dialogue: 0,0:35:32.52,0:35:35.04,Default,,0000,0000,0000,,the split says why this holes and that's Dialogue: 0,0:35:35.04,0:35:36.24,Default,,0000,0000,0000,,good Dialogue: 0,0:35:36.24,0:35:39.54,Default,,0000,0000,0000,,now for the next one which is the train Dialogue: 0,0:35:39.54,0:35:42.00,Default,,0000,0000,0000,,model we are going to connect it as Dialogue: 0,0:35:42.00,0:35:43.50,Default,,0000,0000,0000,,mentioned here Dialogue: 0,0:35:43.50,0:35:48.66,Default,,0000,0000,0000,,and like we have done that and then why Dialogue: 0,0:35:48.66,0:35:50.70,Default,,0000,0000,0000,,am I having here like let's double click Dialogue: 0,0:35:50.70,0:35:54.66,Default,,0000,0000,0000,,on it yeah it has like it needs the Dialogue: 0,0:35:54.66,0:35:57.18,Default,,0000,0000,0000,,label column that I am trying to predict Dialogue: 0,0:35:57.18,0:35:58.68,Default,,0000,0000,0000,,so from here I'm going to choose Dialogue: 0,0:35:58.68,0:36:01.38,Default,,0000,0000,0000,,diabetic I'm going to save Dialogue: 0,0:36:01.38,0:36:05.18,Default,,0000,0000,0000,,I'm going to close this one Dialogue: 0,0:36:05.52,0:36:07.38,Default,,0000,0000,0000,,so it says here Dialogue: 0,0:36:07.38,0:36:10.62,Default,,0000,0000,0000,,the diabetic label the model it will Dialogue: 0,0:36:10.62,0:36:12.30,Default,,0000,0000,0000,,predict the zero and one because this is Dialogue: 0,0:36:12.30,0:36:14.70,Default,,0000,0000,0000,,a binary classification algorithm so Dialogue: 0,0:36:14.70,0:36:16.26,Default,,0000,0000,0000,,it's going to predict either this or Dialogue: 0,0:36:16.26,0:36:17.52,Default,,0000,0000,0000,,that Dialogue: 0,0:36:17.52,0:36:18.90,Default,,0000,0000,0000,,and Dialogue: 0,0:36:18.90,0:36:20.16,Default,,0000,0000,0000,,um Dialogue: 0,0:36:20.16,0:36:23.88,Default,,0000,0000,0000,,I think that's everything to run the the Dialogue: 0,0:36:23.88,0:36:25.86,Default,,0000,0000,0000,,pipeline Dialogue: 0,0:36:25.86,0:36:29.04,Default,,0000,0000,0000,,so everything is done everything is good Dialogue: 0,0:36:29.04,0:36:31.20,Default,,0000,0000,0000,,for this one we're just gonna leave it Dialogue: 0,0:36:31.20,0:36:34.14,Default,,0000,0000,0000,,like for now because this is the next Dialogue: 0,0:36:34.14,0:36:36.48,Default,,0000,0000,0000,,step Dialogue: 0,0:36:36.48,0:36:39.84,Default,,0000,0000,0000,,um this will like be put instead of the Dialogue: 0,0:36:39.84,0:36:43.52,Default,,0000,0000,0000,,score model but then it's Dialogue: 0,0:36:44.10,0:36:46.92,Default,,0000,0000,0000,,delete it for now Dialogue: 0,0:36:46.92,0:36:49.50,Default,,0000,0000,0000,,okay Dialogue: 0,0:36:49.50,0:36:52.92,Default,,0000,0000,0000,,now we have to submit the job in order Dialogue: 0,0:36:52.92,0:36:55.68,Default,,0000,0000,0000,,to see the output of it so I can click Dialogue: 0,0:36:55.68,0:36:59.28,Default,,0000,0000,0000,,on submit and choose the previous job Dialogue: 0,0:36:59.28,0:37:01.20,Default,,0000,0000,0000,,which is the one that I have showed you Dialogue: 0,0:37:01.20,0:37:02.46,Default,,0000,0000,0000,,before Dialogue: 0,0:37:02.46,0:37:05.46,Default,,0000,0000,0000,,and then let's review its output Dialogue: 0,0:37:05.46,0:37:06.96,Default,,0000,0000,0000,,together here Dialogue: 0,0:37:06.96,0:37:09.96,Default,,0000,0000,0000,,so if I go to the jobs Dialogue: 0,0:37:09.96,0:37:15.12,Default,,0000,0000,0000,,if I go to Ms learn maybe it is training Dialogue: 0,0:37:15.12,0:37:18.18,Default,,0000,0000,0000,,I think it's the one that lasted the Dialogue: 0,0:37:18.18,0:37:20.64,Default,,0000,0000,0000,,longest this one here Dialogue: 0,0:37:20.64,0:37:23.70,Default,,0000,0000,0000,,so here I can see Dialogue: 0,0:37:23.70,0:37:27.08,Default,,0000,0000,0000,,the job output what happened inside Dialogue: 0,0:37:27.08,0:37:30.42,Default,,0000,0000,0000,,the model as you can see Dialogue: 0,0:37:30.42,0:37:33.84,Default,,0000,0000,0000,,so the normalization we have like seen Dialogue: 0,0:37:33.84,0:37:36.54,Default,,0000,0000,0000,,before the split data I can preview it Dialogue: 0,0:37:36.54,0:37:39.36,Default,,0000,0000,0000,,the result one or the result two as it Dialogue: 0,0:37:39.36,0:37:41.76,Default,,0000,0000,0000,,splits the data to 70 here and three Dialogue: 0,0:37:41.76,0:37:44.34,Default,,0000,0000,0000,,thirty percent here Dialogue: 0,0:37:44.34,0:37:46.86,Default,,0000,0000,0000,,um I can see the score model which is Dialogue: 0,0:37:46.86,0:37:49.14,Default,,0000,0000,0000,,like something that we need Dialogue: 0,0:37:49.14,0:37:51.92,Default,,0000,0000,0000,,to review Dialogue: 0,0:37:52.38,0:37:56.82,Default,,0000,0000,0000,,um inside the scroll model uh like from Dialogue: 0,0:37:56.82,0:37:57.96,Default,,0000,0000,0000,,here Dialogue: 0,0:37:57.96,0:38:00.96,Default,,0000,0000,0000,,we can see that Dialogue: 0,0:38:00.96,0:38:04.46,Default,,0000,0000,0000,,let's get back here Dialogue: 0,0:38:05.94,0:38:08.22,Default,,0000,0000,0000,,like this is the data that the model has Dialogue: 0,0:38:08.22,0:38:11.58,Default,,0000,0000,0000,,been scored and this is a scoring output Dialogue: 0,0:38:11.58,0:38:15.30,Default,,0000,0000,0000,,so it says code label true and if he is Dialogue: 0,0:38:15.30,0:38:18.30,Default,,0000,0000,0000,,not diabetic so this is Dialogue: 0,0:38:18.30,0:38:19.20,Default,,0000,0000,0000,,um Dialogue: 0,0:38:19.20,0:38:21.84,Default,,0000,0000,0000,,around prediction let's say Dialogue: 0,0:38:21.84,0:38:23.88,Default,,0000,0000,0000,,for this one it's true and true and this Dialogue: 0,0:38:23.88,0:38:26.88,Default,,0000,0000,0000,,is like a good like what do you say Dialogue: 0,0:38:26.88,0:38:29.46,Default,,0000,0000,0000,,prediction and the probabilities of this Dialogue: 0,0:38:29.46,0:38:30.42,Default,,0000,0000,0000,,score Dialogue: 0,0:38:30.42,0:38:33.12,Default,,0000,0000,0000,,which means the certainty of our model Dialogue: 0,0:38:33.12,0:38:36.96,Default,,0000,0000,0000,,of that this is really true it's 80 for Dialogue: 0,0:38:36.96,0:38:38.78,Default,,0000,0000,0000,,this one is 75 Dialogue: 0,0:38:38.78,0:38:42.60,Default,,0000,0000,0000,,so these are some cool metrics that we Dialogue: 0,0:38:42.60,0:38:45.36,Default,,0000,0000,0000,,can review to understand how our model Dialogue: 0,0:38:45.36,0:38:47.70,Default,,0000,0000,0000,,is performing it's performing good for Dialogue: 0,0:38:47.70,0:38:48.54,Default,,0000,0000,0000,,now Dialogue: 0,0:38:48.54,0:38:53.18,Default,,0000,0000,0000,,let's check our evaluation model Dialogue: 0,0:38:53.18,0:38:56.70,Default,,0000,0000,0000,,so this is the extra one that I told you Dialogue: 0,0:38:56.70,0:38:59.58,Default,,0000,0000,0000,,about instead of the like Dialogue: 0,0:38:59.58,0:39:01.80,Default,,0000,0000,0000,,score model only we are going to add Dialogue: 0,0:39:01.80,0:39:04.26,Default,,0000,0000,0000,,what evaluate model Dialogue: 0,0:39:04.26,0:39:06.90,Default,,0000,0000,0000,,after it so here Dialogue: 0,0:39:06.90,0:39:09.42,Default,,0000,0000,0000,,we're going to go to our asset library Dialogue: 0,0:39:09.42,0:39:12.18,Default,,0000,0000,0000,,and we are going to choose the evaluate Dialogue: 0,0:39:12.18,0:39:14.94,Default,,0000,0000,0000,,model Dialogue: 0,0:39:14.94,0:39:17.76,Default,,0000,0000,0000,,and we are going to put it here and we Dialogue: 0,0:39:17.76,0:39:20.22,Default,,0000,0000,0000,,are going to connect it and we are going Dialogue: 0,0:39:20.22,0:39:23.10,Default,,0000,0000,0000,,to submit the job using the same name of Dialogue: 0,0:39:23.10,0:39:25.14,Default,,0000,0000,0000,,the job that we used previously Dialogue: 0,0:39:25.14,0:39:29.52,Default,,0000,0000,0000,,let's review it uh also so after it Dialogue: 0,0:39:29.52,0:39:33.30,Default,,0000,0000,0000,,finishes you will find it here so I have Dialogue: 0,0:39:33.30,0:39:35.28,Default,,0000,0000,0000,,already done it before this is how I'm Dialogue: 0,0:39:35.28,0:39:37.38,Default,,0000,0000,0000,,able to see the output Dialogue: 0,0:39:37.38,0:39:40.32,Default,,0000,0000,0000,,so let's see Dialogue: 0,0:39:40.32,0:39:43.28,Default,,0000,0000,0000,,what what is the output of this Dialogue: 0,0:39:43.28,0:39:45.66,Default,,0000,0000,0000,,evaluation process Dialogue: 0,0:39:45.66,0:39:49.80,Default,,0000,0000,0000,,here it mentioned to you that there are Dialogue: 0,0:39:49.80,0:39:51.48,Default,,0000,0000,0000,,some metrics Dialogue: 0,0:39:51.48,0:39:54.84,Default,,0000,0000,0000,,like the confusion Matrix which Carlotta Dialogue: 0,0:39:54.84,0:39:57.06,Default,,0000,0000,0000,,told you about there is the accuracy the Dialogue: 0,0:39:57.06,0:39:59.76,Default,,0000,0000,0000,,Precision the recall and F1 School Dialogue: 0,0:39:59.76,0:40:02.34,Default,,0000,0000,0000,,every Matrix gives us some insight about Dialogue: 0,0:40:02.34,0:40:04.92,Default,,0000,0000,0000,,our model it helps us to understand it Dialogue: 0,0:40:04.92,0:40:08.58,Default,,0000,0000,0000,,more more and Dialogue: 0,0:40:08.58,0:40:10.56,Default,,0000,0000,0000,,like understand if it's overfitting if Dialogue: 0,0:40:10.56,0:40:12.24,Default,,0000,0000,0000,,it's good if it's bad and really really Dialogue: 0,0:40:12.24,0:40:16.34,Default,,0000,0000,0000,,like understand how it's working Dialogue: 0,0:40:17.06,0:40:20.40,Default,,0000,0000,0000,,now I'm just waiting for the job to load Dialogue: 0,0:40:20.40,0:40:22.92,Default,,0000,0000,0000,,until it loads Dialogue: 0,0:40:22.92,0:40:23.64,Default,,0000,0000,0000,,um Dialogue: 0,0:40:23.64,0:40:26.04,Default,,0000,0000,0000,,we can continue to Dialogue: 0,0:40:26.04,0:40:28.74,Default,,0000,0000,0000,,to work on our Dialogue: 0,0:40:28.74,0:40:31.80,Default,,0000,0000,0000,,model so I will go to my designer I'm Dialogue: 0,0:40:31.80,0:40:34.74,Default,,0000,0000,0000,,just going to confirm this Dialogue: 0,0:40:34.74,0:40:38.28,Default,,0000,0000,0000,,and I'm going to continue working on it Dialogue: 0,0:40:38.28,0:40:39.78,Default,,0000,0000,0000,,from Dialogue: 0,0:40:39.78,0:40:42.12,Default,,0000,0000,0000,,where we have stopped where have we Dialogue: 0,0:40:42.12,0:40:43.56,Default,,0000,0000,0000,,stopped Dialogue: 0,0:40:43.56,0:40:46.44,Default,,0000,0000,0000,,we have stopped on the evaluate model so Dialogue: 0,0:40:46.44,0:40:48.96,Default,,0000,0000,0000,,I'm going to choose this one Dialogue: 0,0:40:48.96,0:40:53.42,Default,,0000,0000,0000,,and it says here Dialogue: 0,0:40:54.18,0:40:56.94,Default,,0000,0000,0000,,select experiment create inference Dialogue: 0,0:40:56.94,0:40:58.20,Default,,0000,0000,0000,,pipeline so Dialogue: 0,0:40:58.20,0:41:01.08,Default,,0000,0000,0000,,I am going to go to the jobs Dialogue: 0,0:41:01.08,0:41:04.68,Default,,0000,0000,0000,,I'm going to select my experiment Dialogue: 0,0:41:04.68,0:41:06.66,Default,,0000,0000,0000,,I hope this works Dialogue: 0,0:41:06.66,0:41:09.72,Default,,0000,0000,0000,,okay salute finally now we have our Dialogue: 0,0:41:09.72,0:41:12.18,Default,,0000,0000,0000,,evaluate model output Dialogue: 0,0:41:12.18,0:41:15.48,Default,,0000,0000,0000,,let's previews evaluation results Dialogue: 0,0:41:15.48,0:41:18.66,Default,,0000,0000,0000,,and uh Dialogue: 0,0:41:18.66,0:41:22.22,Default,,0000,0000,0000,,cool come on Dialogue: 0,0:41:25.50,0:41:28.02,Default,,0000,0000,0000,,finally now we can create our inference Dialogue: 0,0:41:28.02,0:41:31.02,Default,,0000,0000,0000,,pipeline so Dialogue: 0,0:41:31.02,0:41:34.20,Default,,0000,0000,0000,,I think it says that Dialogue: 0,0:41:34.20,0:41:35.28,Default,,0000,0000,0000,,um Dialogue: 0,0:41:35.28,0:41:38.16,Default,,0000,0000,0000,,select the experiment then select Ms Dialogue: 0,0:41:38.16,0:41:39.36,Default,,0000,0000,0000,,learn so Dialogue: 0,0:41:39.36,0:41:43.32,Default,,0000,0000,0000,,I am just going to select it Dialogue: 0,0:41:43.32,0:41:48.30,Default,,0000,0000,0000,,and finally now we can the ROC curve we Dialogue: 0,0:41:48.30,0:41:51.00,Default,,0000,0000,0000,,can see it that the true positive rate Dialogue: 0,0:41:51.00,0:41:53.76,Default,,0000,0000,0000,,and the force was integrate the false Dialogue: 0,0:41:53.76,0:41:56.66,Default,,0000,0000,0000,,positive rate is increasing with time Dialogue: 0,0:41:56.66,0:42:01.02,Default,,0000,0000,0000,,and also the true positive rate true Dialogue: 0,0:42:01.02,0:42:03.54,Default,,0000,0000,0000,,positive is something that it predicted Dialogue: 0,0:42:03.54,0:42:06.96,Default,,0000,0000,0000,,that it is uh positive it has diabetes Dialogue: 0,0:42:06.96,0:42:09.48,Default,,0000,0000,0000,,and it's really a it's really true it Dialogue: 0,0:42:09.48,0:42:12.60,Default,,0000,0000,0000,,the person really has diabetes okay and Dialogue: 0,0:42:12.60,0:42:14.76,Default,,0000,0000,0000,,for the false positive it predicted that Dialogue: 0,0:42:14.76,0:42:17.58,Default,,0000,0000,0000,,someone has diabetes and someone doesn't Dialogue: 0,0:42:17.58,0:42:20.96,Default,,0000,0000,0000,,has it this is what true position and Dialogue: 0,0:42:20.96,0:42:24.96,Default,,0000,0000,0000,,false positive means this is The Recoil Dialogue: 0,0:42:24.96,0:42:28.02,Default,,0000,0000,0000,,curve so we can like review the metrics Dialogue: 0,0:42:28.02,0:42:32.16,Default,,0000,0000,0000,,of our model this is the lift curve I Dialogue: 0,0:42:32.16,0:42:36.00,Default,,0000,0000,0000,,can change the threshold of my confusion Dialogue: 0,0:42:36.00,0:42:37.74,Default,,0000,0000,0000,,Matrix here Dialogue: 0,0:42:37.74,0:42:39.12,Default,,0000,0000,0000,,and this could look don't want to add Dialogue: 0,0:42:39.12,0:42:43.92,Default,,0000,0000,0000,,anything about the the the graphs and Dialogue: 0,0:42:43.92,0:42:47.00,Default,,0000,0000,0000,,you can do so Dialogue: 0,0:42:50.46,0:42:51.00,Default,,0000,0000,0000,,um Dialogue: 0,0:42:51.00,0:42:54.72,Default,,0000,0000,0000,,yeah so just wanted to if you go yeah I Dialogue: 0,0:42:54.72,0:42:57.12,Default,,0000,0000,0000,,just wanted to comment comment for the Dialogue: 0,0:42:57.12,0:43:00.48,Default,,0000,0000,0000,,RSC curve uh that actually from this Dialogue: 0,0:43:00.48,0:43:03.90,Default,,0000,0000,0000,,graph the metric which uh usually we're Dialogue: 0,0:43:03.90,0:43:06.96,Default,,0000,0000,0000,,going to compute is the end area under Dialogue: 0,0:43:06.96,0:43:09.90,Default,,0000,0000,0000,,under the curve and this coefficient or Dialogue: 0,0:43:09.90,0:43:12.24,Default,,0000,0000,0000,,metric Dialogue: 0,0:43:12.24,0:43:15.06,Default,,0000,0000,0000,,um it's a confusion Dialogue: 0,0:43:15.06,0:43:18.42,Default,,0000,0000,0000,,um is a value that could span from from Dialogue: 0,0:43:18.42,0:43:22.92,Default,,0000,0000,0000,,zero to one and the the highest is Dialogue: 0,0:43:22.92,0:43:23.48,Default,,0000,0000,0000,,um Dialogue: 0,0:43:23.48,0:43:26.70,Default,,0000,0000,0000,,this the highest is the the score so the Dialogue: 0,0:43:26.70,0:43:29.22,Default,,0000,0000,0000,,the closest one Dialogue: 0,0:43:29.22,0:43:32.76,Default,,0000,0000,0000,,um so the the highest is the amount of Dialogue: 0,0:43:32.76,0:43:35.28,Default,,0000,0000,0000,,area under this curve Dialogue: 0,0:43:35.28,0:43:40.50,Default,,0000,0000,0000,,um the the the highest performance uh we Dialogue: 0,0:43:40.50,0:43:43.32,Default,,0000,0000,0000,,we've got from from our model and Dialogue: 0,0:43:43.32,0:43:46.44,Default,,0000,0000,0000,,another thing is what John is Dialogue: 0,0:43:46.44,0:43:49.68,Default,,0000,0000,0000,,um playing with so this threshold for Dialogue: 0,0:43:49.68,0:43:51.38,Default,,0000,0000,0000,,the logistic Dialogue: 0,0:43:51.38,0:43:55.92,Default,,0000,0000,0000,,regression is the threshold used by the Dialogue: 0,0:43:55.92,0:43:57.18,Default,,0000,0000,0000,,model Dialogue: 0,0:43:57.18,0:43:58.74,Default,,0000,0000,0000,,um to Dialogue: 0,0:43:58.74,0:43:59.52,Default,,0000,0000,0000,,um Dialogue: 0,0:43:59.52,0:44:02.94,Default,,0000,0000,0000,,to predict uh if the category is zero or Dialogue: 0,0:44:02.94,0:44:05.22,Default,,0000,0000,0000,,one so if the probability the Dialogue: 0,0:44:05.22,0:44:08.60,Default,,0000,0000,0000,,probability score is above the threshold Dialogue: 0,0:44:08.60,0:44:11.58,Default,,0000,0000,0000,,then the category will be predicted as Dialogue: 0,0:44:11.58,0:44:15.36,Default,,0000,0000,0000,,one while if the the probability is Dialogue: 0,0:44:15.36,0:44:17.46,Default,,0000,0000,0000,,below the threshold in this case for Dialogue: 0,0:44:17.46,0:44:21.30,Default,,0000,0000,0000,,example 0.5 the category is predicted as Dialogue: 0,0:44:21.30,0:44:23.58,Default,,0000,0000,0000,,as zero so that's why it's very Dialogue: 0,0:44:23.58,0:44:26.10,Default,,0000,0000,0000,,important to um to choose the the Dialogue: 0,0:44:26.10,0:44:27.84,Default,,0000,0000,0000,,threshold because the performance really Dialogue: 0,0:44:27.84,0:44:29.52,Default,,0000,0000,0000,,can vary Dialogue: 0,0:44:29.52,0:44:30.56,Default,,0000,0000,0000,,um Dialogue: 0,0:44:30.56,0:44:34.38,Default,,0000,0000,0000,,with this threshold value Dialogue: 0,0:44:34.38,0:44:41.10,Default,,0000,0000,0000,,uh thank you uh so much uh kellota and Dialogue: 0,0:44:41.40,0:44:44.40,Default,,0000,0000,0000,,as I mentioned now we are going to like Dialogue: 0,0:44:44.40,0:44:46.56,Default,,0000,0000,0000,,create our inference pipeline so we are Dialogue: 0,0:44:46.56,0:44:48.54,Default,,0000,0000,0000,,going to select the latest one which I Dialogue: 0,0:44:48.54,0:44:50.82,Default,,0000,0000,0000,,already have it opened here this is the Dialogue: 0,0:44:50.82,0:44:52.86,Default,,0000,0000,0000,,one that we were reviewing together this Dialogue: 0,0:44:52.86,0:44:55.50,Default,,0000,0000,0000,,is where we have stopped and we're going Dialogue: 0,0:44:55.50,0:44:57.60,Default,,0000,0000,0000,,to create an inference pipeline we are Dialogue: 0,0:44:57.60,0:44:59.52,Default,,0000,0000,0000,,going to choose a real-time inference Dialogue: 0,0:44:59.52,0:45:02.52,Default,,0000,0000,0000,,pipeline okay Dialogue: 0,0:45:02.52,0:45:05.16,Default,,0000,0000,0000,,um from where I can find this here as it Dialogue: 0,0:45:05.16,0:45:08.10,Default,,0000,0000,0000,,says real-time inference pipeline Dialogue: 0,0:45:08.10,0:45:10.68,Default,,0000,0000,0000,,so it's gonna add some things to my Dialogue: 0,0:45:10.68,0:45:12.42,Default,,0000,0000,0000,,workspace it's going to add the web Dialogue: 0,0:45:12.42,0:45:13.98,Default,,0000,0000,0000,,service inboard it's going to have the Dialogue: 0,0:45:13.98,0:45:15.78,Default,,0000,0000,0000,,web service output because we will be Dialogue: 0,0:45:15.78,0:45:18.18,Default,,0000,0000,0000,,creating it as a web service to access Dialogue: 0,0:45:18.18,0:45:19.74,Default,,0000,0000,0000,,it from the internet Dialogue: 0,0:45:19.74,0:45:21.90,Default,,0000,0000,0000,,uh what are we going to do we're going Dialogue: 0,0:45:21.90,0:45:24.72,Default,,0000,0000,0000,,to remove this diabetes data okay Dialogue: 0,0:45:24.72,0:45:27.54,Default,,0000,0000,0000,,and we are going to get a component Dialogue: 0,0:45:27.54,0:45:29.36,Default,,0000,0000,0000,,called Web Dialogue: 0,0:45:29.36,0:45:33.18,Default,,0000,0000,0000,,input and what's up let me check Dialogue: 0,0:45:33.18,0:45:35.94,Default,,0000,0000,0000,,it's enter data manually Dialogue: 0,0:45:35.94,0:45:38.40,Default,,0000,0000,0000,,we have we already have the with input Dialogue: 0,0:45:38.40,0:45:39.54,Default,,0000,0000,0000,,present Dialogue: 0,0:45:39.54,0:45:42.12,Default,,0000,0000,0000,,so we are going to get the entire data Dialogue: 0,0:45:42.12,0:45:43.20,Default,,0000,0000,0000,,manually Dialogue: 0,0:45:43.20,0:45:45.42,Default,,0000,0000,0000,,and we're going to collect it to connect Dialogue: 0,0:45:45.42,0:45:49.56,Default,,0000,0000,0000,,it as it was connected before like that Dialogue: 0,0:45:49.56,0:45:53.04,Default,,0000,0000,0000,,and also I am not going to directly take Dialogue: 0,0:45:53.04,0:45:55.26,Default,,0000,0000,0000,,the web service sorry escort model to Dialogue: 0,0:45:55.26,0:45:57.84,Default,,0000,0000,0000,,the web service output like that Dialogue: 0,0:45:57.84,0:46:00.24,Default,,0000,0000,0000,,I'm going to delete this Dialogue: 0,0:46:00.24,0:46:03.96,Default,,0000,0000,0000,,and I'm going to execute a python script Dialogue: 0,0:46:03.96,0:46:05.88,Default,,0000,0000,0000,,before Dialogue: 0,0:46:05.88,0:46:09.50,Default,,0000,0000,0000,,I display my result Dialogue: 0,0:46:10.68,0:46:12.06,Default,,0000,0000,0000,,so Dialogue: 0,0:46:12.06,0:46:17.48,Default,,0000,0000,0000,,this will be connected like okay but Dialogue: 0,0:46:19.26,0:46:20.40,Default,,0000,0000,0000,,so Dialogue: 0,0:46:20.40,0:46:23.60,Default,,0000,0000,0000,,the other way around Dialogue: 0,0:46:23.60,0:46:27.66,Default,,0000,0000,0000,,and from here I am going to connect this Dialogue: 0,0:46:27.66,0:46:30.96,Default,,0000,0000,0000,,with that and there is some data uh that Dialogue: 0,0:46:30.96,0:46:33.48,Default,,0000,0000,0000,,we will be getting from the node or from Dialogue: 0,0:46:33.48,0:46:37.68,Default,,0000,0000,0000,,the the examination here and this is the Dialogue: 0,0:46:37.68,0:46:40.74,Default,,0000,0000,0000,,data that will be entered like to our Dialogue: 0,0:46:40.74,0:46:44.40,Default,,0000,0000,0000,,website manually okay this is instead of Dialogue: 0,0:46:44.40,0:46:47.46,Default,,0000,0000,0000,,the data that we have been getting from Dialogue: 0,0:46:47.46,0:46:49.74,Default,,0000,0000,0000,,our data set that we created so I'm just Dialogue: 0,0:46:49.74,0:46:51.96,Default,,0000,0000,0000,,going to double click on it and choose Dialogue: 0,0:46:51.96,0:46:55.58,Default,,0000,0000,0000,,CSV and I will choose it has headers Dialogue: 0,0:46:55.58,0:47:00.84,Default,,0000,0000,0000,,and I will take or copy this content and Dialogue: 0,0:47:00.84,0:47:02.82,Default,,0000,0000,0000,,put it there okay Dialogue: 0,0:47:02.82,0:47:05.70,Default,,0000,0000,0000,,so let's do it Dialogue: 0,0:47:05.70,0:47:07.92,Default,,0000,0000,0000,,I think I have to click on edit code now Dialogue: 0,0:47:07.92,0:47:10.68,Default,,0000,0000,0000,,I can click on Save and I can close it Dialogue: 0,0:47:10.68,0:47:13.08,Default,,0000,0000,0000,,another thing which is the python script Dialogue: 0,0:47:13.08,0:47:16.70,Default,,0000,0000,0000,,that we will be executing Dialogue: 0,0:47:17.10,0:47:19.38,Default,,0000,0000,0000,,um yeah we are going to remove this also Dialogue: 0,0:47:19.38,0:47:21.14,Default,,0000,0000,0000,,we don't need the evaluate model anymore Dialogue: 0,0:47:21.14,0:47:24.32,Default,,0000,0000,0000,,so we are going to remove Dialogue: 0,0:47:24.32,0:47:28.58,Default,,0000,0000,0000,,script that I will be executing okay Dialogue: 0,0:47:28.58,0:47:32.60,Default,,0000,0000,0000,,I can find it here Dialogue: 0,0:47:33.54,0:47:34.62,Default,,0000,0000,0000,,um Dialogue: 0,0:47:34.62,0:47:35.76,Default,,0000,0000,0000,,yeah Dialogue: 0,0:47:35.76,0:47:38.64,Default,,0000,0000,0000,,this is the python script that we will Dialogue: 0,0:47:38.64,0:47:41.52,Default,,0000,0000,0000,,execute and it says to you that this Dialogue: 0,0:47:41.52,0:47:43.62,Default,,0000,0000,0000,,code selects only the patient's ID Dialogue: 0,0:47:43.62,0:47:45.00,Default,,0000,0000,0000,,that's correct label the school Dialogue: 0,0:47:45.00,0:47:47.70,Default,,0000,0000,0000,,probability and return returns them to Dialogue: 0,0:47:47.70,0:47:49.98,Default,,0000,0000,0000,,the web service output so we don't want Dialogue: 0,0:47:49.98,0:47:51.96,Default,,0000,0000,0000,,to return all the columns as we have Dialogue: 0,0:47:51.96,0:47:53.34,Default,,0000,0000,0000,,seen previously Dialogue: 0,0:47:53.34,0:47:55.56,Default,,0000,0000,0000,,uh the determines everything Dialogue: 0,0:47:55.56,0:47:56.94,Default,,0000,0000,0000,,so Dialogue: 0,0:47:56.94,0:47:59.04,Default,,0000,0000,0000,,we want to return certain stuff the Dialogue: 0,0:47:59.04,0:48:02.94,Default,,0000,0000,0000,,stuff that we will use inside our Dialogue: 0,0:48:02.94,0:48:05.64,Default,,0000,0000,0000,,endpoint so I'm just going to select Dialogue: 0,0:48:05.64,0:48:07.98,Default,,0000,0000,0000,,everything and delete it and Dialogue: 0,0:48:07.98,0:48:11.06,Default,,0000,0000,0000,,paste the code that I have gotten from Dialogue: 0,0:48:11.06,0:48:14.28,Default,,0000,0000,0000,,the uh Dialogue: 0,0:48:14.28,0:48:16.50,Default,,0000,0000,0000,,the Microsoft learn Docs Dialogue: 0,0:48:16.50,0:48:19.08,Default,,0000,0000,0000,,now I can click on Save and I can close Dialogue: 0,0:48:19.08,0:48:20.28,Default,,0000,0000,0000,,this Dialogue: 0,0:48:20.28,0:48:21.96,Default,,0000,0000,0000,,let me check something I don't think Dialogue: 0,0:48:21.96,0:48:25.02,Default,,0000,0000,0000,,it's saved it's saved but the display is Dialogue: 0,0:48:25.02,0:48:26.16,Default,,0000,0000,0000,,wrong okay Dialogue: 0,0:48:26.16,0:48:30.30,Default,,0000,0000,0000,,and now I think everything is good to go Dialogue: 0,0:48:30.30,0:48:32.64,Default,,0000,0000,0000,,I'm just gonna double check everything Dialogue: 0,0:48:32.64,0:48:36.36,Default,,0000,0000,0000,,so uh yeah we are gonna change the name Dialogue: 0,0:48:36.36,0:48:38.64,Default,,0000,0000,0000,,of this uh Dialogue: 0,0:48:38.64,0:48:40.80,Default,,0000,0000,0000,,Pipeline and we are gonna call it Dialogue: 0,0:48:40.80,0:48:42.78,Default,,0000,0000,0000,,predict Dialogue: 0,0:48:42.78,0:48:46.32,Default,,0000,0000,0000,,diabetes okay Dialogue: 0,0:48:46.32,0:48:50.34,Default,,0000,0000,0000,,now let's close it and Dialogue: 0,0:48:50.34,0:48:57.12,Default,,0000,0000,0000,,I think that we are good to go so Dialogue: 0,0:48:57.12,0:48:59.30,Default,,0000,0000,0000,,um Dialogue: 0,0:48:59.72,0:49:04.46,Default,,0000,0000,0000,,okay I think everything is good for us Dialogue: 0,0:49:06.42,0:49:08.34,Default,,0000,0000,0000,,I just want to make sure of something is Dialogue: 0,0:49:08.34,0:49:12.42,Default,,0000,0000,0000,,the data is correct the data is uh yeah Dialogue: 0,0:49:12.42,0:49:13.56,Default,,0000,0000,0000,,it's correct Dialogue: 0,0:49:13.56,0:49:16.32,Default,,0000,0000,0000,,okay now I can run the pipeline let's Dialogue: 0,0:49:16.32,0:49:17.64,Default,,0000,0000,0000,,submit Dialogue: 0,0:49:17.64,0:49:21.00,Default,,0000,0000,0000,,select an existing Pipeline and we're Dialogue: 0,0:49:21.00,0:49:22.74,Default,,0000,0000,0000,,going to choose the MS layer and Dialogue: 0,0:49:22.74,0:49:24.60,Default,,0000,0000,0000,,diabetes training which is the pipeline Dialogue: 0,0:49:24.60,0:49:27.06,Default,,0000,0000,0000,,that we have been working on Dialogue: 0,0:49:27.06,0:49:31.62,Default,,0000,0000,0000,,from the beginning of this module Dialogue: 0,0:49:31.68,0:49:33.84,Default,,0000,0000,0000,,I don't think that this is going to take Dialogue: 0,0:49:33.84,0:49:36.06,Default,,0000,0000,0000,,much time so we have submitted the job Dialogue: 0,0:49:36.06,0:49:37.32,Default,,0000,0000,0000,,and it's running Dialogue: 0,0:49:37.32,0:49:40.14,Default,,0000,0000,0000,,until the job ends we are going to set Dialogue: 0,0:49:40.14,0:49:41.72,Default,,0000,0000,0000,,everything Dialogue: 0,0:49:41.72,0:49:45.60,Default,,0000,0000,0000,,and for deploying a service Dialogue: 0,0:49:45.60,0:49:49.56,Default,,0000,0000,0000,,in order to deploy a service okay Dialogue: 0,0:49:49.56,0:49:50.52,Default,,0000,0000,0000,,um Dialogue: 0,0:49:50.52,0:49:54.00,Default,,0000,0000,0000,,I have to have the job ready so Dialogue: 0,0:49:54.00,0:49:56.04,Default,,0000,0000,0000,,until it's ready or you can deploy it so Dialogue: 0,0:49:56.04,0:49:58.32,Default,,0000,0000,0000,,let's go to the job the job details from Dialogue: 0,0:49:58.32,0:50:01.32,Default,,0000,0000,0000,,here okay Dialogue: 0,0:50:01.32,0:50:05.12,Default,,0000,0000,0000,,and until it finishes Dialogue: 0,0:50:05.12,0:50:07.26,Default,,0000,0000,0000,,Carlotta do you think that we can have Dialogue: 0,0:50:07.26,0:50:09.24,Default,,0000,0000,0000,,the questions and then we can get back Dialogue: 0,0:50:09.24,0:50:12.86,Default,,0000,0000,0000,,to the job I'm deploying it Dialogue: 0,0:50:13.70,0:50:17.58,Default,,0000,0000,0000,,yeah yeah yeah so yeah yeah guys if you Dialogue: 0,0:50:17.58,0:50:18.98,Default,,0000,0000,0000,,have any questions Dialogue: 0,0:50:18.98,0:50:24.12,Default,,0000,0000,0000,,uh on on what you just uh just saw here Dialogue: 0,0:50:24.12,0:50:26.94,Default,,0000,0000,0000,,or into introductions feel free this is Dialogue: 0,0:50:26.94,0:50:30.30,Default,,0000,0000,0000,,a good moment we can uh we can discuss Dialogue: 0,0:50:30.30,0:50:33.90,Default,,0000,0000,0000,,now while we wait for this job to to Dialogue: 0,0:50:33.90,0:50:36.26,Default,,0000,0000,0000,,finish Dialogue: 0,0:50:36.30,0:50:38.76,Default,,0000,0000,0000,,uh and the Dialogue: 0,0:50:38.76,0:50:40.22,Default,,0000,0000,0000,,can can Dialogue: 0,0:50:40.22,0:50:45.00,Default,,0000,0000,0000,,we have the energy check one or like Dialogue: 0,0:50:45.00,0:50:47.70,Default,,0000,0000,0000,,what do you think uh yeah we can also go Dialogue: 0,0:50:47.70,0:50:49.68,Default,,0000,0000,0000,,to the knowledge check Dialogue: 0,0:50:49.68,0:50:50.94,Default,,0000,0000,0000,,um Dialogue: 0,0:50:50.94,0:50:56.34,Default,,0000,0000,0000,,yeah okay so let me share my screen Dialogue: 0,0:50:56.34,0:50:58.98,Default,,0000,0000,0000,,yeah so if you have not any questions Dialogue: 0,0:50:58.98,0:51:01.62,Default,,0000,0000,0000,,for us we can maybe propose some Dialogue: 0,0:51:01.62,0:51:05.34,Default,,0000,0000,0000,,questions to to you that you can Dialogue: 0,0:51:05.34,0:51:06.24,Default,,0000,0000,0000,,um Dialogue: 0,0:51:06.24,0:51:09.66,Default,,0000,0000,0000,,uh to check our knowledge so far and you Dialogue: 0,0:51:09.66,0:51:12.90,Default,,0000,0000,0000,,can uh maybe answer to these questions Dialogue: 0,0:51:12.90,0:51:15.42,Default,,0000,0000,0000,,uh via chat Dialogue: 0,0:51:15.42,0:51:18.30,Default,,0000,0000,0000,,um so we have do you see my screen can Dialogue: 0,0:51:18.30,0:51:19.86,Default,,0000,0000,0000,,you see my screen Dialogue: 0,0:51:19.86,0:51:22.02,Default,,0000,0000,0000,,yes Dialogue: 0,0:51:22.02,0:51:25.44,Default,,0000,0000,0000,,um so John I think I will read this Dialogue: 0,0:51:25.44,0:51:29.04,Default,,0000,0000,0000,,question loud and ask it to you okay so Dialogue: 0,0:51:29.04,0:51:32.04,Default,,0000,0000,0000,,are you ready to transfer Dialogue: 0,0:51:32.04,0:51:33.66,Default,,0000,0000,0000,,yes I am Dialogue: 0,0:51:33.66,0:51:35.46,Default,,0000,0000,0000,,so Dialogue: 0,0:51:35.46,0:51:37.26,Default,,0000,0000,0000,,um you're using Azure machine learning Dialogue: 0,0:51:37.26,0:51:39.78,Default,,0000,0000,0000,,designer to create a training pipeline Dialogue: 0,0:51:39.78,0:51:42.54,Default,,0000,0000,0000,,for a binary classification model so Dialogue: 0,0:51:42.54,0:51:45.30,Default,,0000,0000,0000,,what what we were doing in our demo Dialogue: 0,0:51:45.30,0:51:48.06,Default,,0000,0000,0000,,right and you have added a data set Dialogue: 0,0:51:48.06,0:51:51.66,Default,,0000,0000,0000,,containing features and labels uh a true Dialogue: 0,0:51:51.66,0:51:54.36,Default,,0000,0000,0000,,class decision Forest module so we used Dialogue: 0,0:51:54.36,0:51:56.82,Default,,0000,0000,0000,,a logistic regression model our Dialogue: 0,0:51:56.82,0:51:59.10,Default,,0000,0000,0000,,um in our example here we're using A2 Dialogue: 0,0:51:59.10,0:52:01.26,Default,,0000,0000,0000,,class decision force model Dialogue: 0,0:52:01.26,0:52:04.50,Default,,0000,0000,0000,,and of course a trained model model you Dialogue: 0,0:52:04.50,0:52:07.20,Default,,0000,0000,0000,,plan now to use score model and evaluate Dialogue: 0,0:52:07.20,0:52:09.48,Default,,0000,0000,0000,,model modules to test the train model Dialogue: 0,0:52:09.48,0:52:11.64,Default,,0000,0000,0000,,with the subset of the data set that Dialogue: 0,0:52:11.64,0:52:13.50,Default,,0000,0000,0000,,wasn't used for training Dialogue: 0,0:52:13.50,0:52:15.96,Default,,0000,0000,0000,,but what are we missing so what's Dialogue: 0,0:52:15.96,0:52:18.78,Default,,0000,0000,0000,,another model you should add and we have Dialogue: 0,0:52:18.78,0:52:21.66,Default,,0000,0000,0000,,three options we have join data we have Dialogue: 0,0:52:21.66,0:52:25.20,Default,,0000,0000,0000,,split data or we have select columns in Dialogue: 0,0:52:25.20,0:52:26.82,Default,,0000,0000,0000,,in that set Dialogue: 0,0:52:26.82,0:52:28.26,Default,,0000,0000,0000,,so Dialogue: 0,0:52:28.26,0:52:32.04,Default,,0000,0000,0000,,um while John thinks about the answer uh Dialogue: 0,0:52:32.04,0:52:33.84,Default,,0000,0000,0000,,go ahead and Dialogue: 0,0:52:33.84,0:52:34.80,Default,,0000,0000,0000,,um Dialogue: 0,0:52:34.80,0:52:37.80,Default,,0000,0000,0000,,answer yourself so give us your your Dialogue: 0,0:52:37.80,0:52:39.54,Default,,0000,0000,0000,,guess Dialogue: 0,0:52:39.54,0:52:41.94,Default,,0000,0000,0000,,put in the chat or just come off mute Dialogue: 0,0:52:41.94,0:52:44.90,Default,,0000,0000,0000,,and announcer Dialogue: 0,0:52:46.74,0:52:48.96,Default,,0000,0000,0000,,a b yes Dialogue: 0,0:52:48.96,0:52:50.58,Default,,0000,0000,0000,,yeah what do you think is the correct Dialogue: 0,0:52:50.58,0:52:53.58,Default,,0000,0000,0000,,answer for this one I need something to Dialogue: 0,0:52:53.58,0:52:56.58,Default,,0000,0000,0000,,uh like I have to score my model and I Dialogue: 0,0:52:56.58,0:53:00.36,Default,,0000,0000,0000,,have to evaluate it so I I like I need Dialogue: 0,0:53:00.36,0:53:03.12,Default,,0000,0000,0000,,something to enable me to do these two Dialogue: 0,0:53:03.12,0:53:05.36,Default,,0000,0000,0000,,things Dialogue: 0,0:53:06.66,0:53:09.12,Default,,0000,0000,0000,,I think it's something you showed us in Dialogue: 0,0:53:09.12,0:53:12.98,Default,,0000,0000,0000,,in your pipeline right John Dialogue: 0,0:53:13.26,0:53:16.82,Default,,0000,0000,0000,,of course I did Dialogue: 0,0:53:23.46,0:53:28.02,Default,,0000,0000,0000,,uh we have no guests yeah Dialogue: 0,0:53:28.02,0:53:32.28,Default,,0000,0000,0000,,can someone like someone want to guess Dialogue: 0,0:53:32.28,0:53:35.58,Default,,0000,0000,0000,,uh we have a b yeah Dialogue: 0,0:53:35.58,0:53:38.76,Default,,0000,0000,0000,,uh maybe Dialogue: 0,0:53:38.76,0:53:43.26,Default,,0000,0000,0000,,so uh in order to do this in order to do Dialogue: 0,0:53:43.26,0:53:46.20,Default,,0000,0000,0000,,this I mentioned the Dialogue: 0,0:53:46.20,0:53:49.38,Default,,0000,0000,0000,,the module that is going to help me to Dialogue: 0,0:53:49.38,0:53:53.82,Default,,0000,0000,0000,,to divide my data into two things 70 for Dialogue: 0,0:53:53.82,0:53:56.22,Default,,0000,0000,0000,,the training and thirty percent for the Dialogue: 0,0:53:56.22,0:53:59.34,Default,,0000,0000,0000,,evaluation so what did I use I used Dialogue: 0,0:53:59.34,0:54:01.86,Default,,0000,0000,0000,,split data because this is what is going Dialogue: 0,0:54:01.86,0:54:05.28,Default,,0000,0000,0000,,to split my data randomly into training Dialogue: 0,0:54:05.28,0:54:08.58,Default,,0000,0000,0000,,data and validation data so the correct Dialogue: 0,0:54:08.58,0:54:12.24,Default,,0000,0000,0000,,answer is B and good job eek thank you Dialogue: 0,0:54:12.24,0:54:13.98,Default,,0000,0000,0000,,for participating Dialogue: 0,0:54:13.98,0:54:17.40,Default,,0000,0000,0000,,next question please Dialogue: 0,0:54:17.40,0:54:19.34,Default,,0000,0000,0000,,yes Dialogue: 0,0:54:19.34,0:54:22.56,Default,,0000,0000,0000,,answer so thanks John Dialogue: 0,0:54:22.56,0:54:26.04,Default,,0000,0000,0000,,uh for uh explaining us the the correct Dialogue: 0,0:54:26.04,0:54:26.94,Default,,0000,0000,0000,,one Dialogue: 0,0:54:26.94,0:54:30.42,Default,,0000,0000,0000,,and we want to go with question two Dialogue: 0,0:54:30.42,0:54:33.18,Default,,0000,0000,0000,,yeah so uh I'm going to ask you now Dialogue: 0,0:54:33.18,0:54:35.88,Default,,0000,0000,0000,,karnata you use Azure machine learning Dialogue: 0,0:54:35.88,0:54:38.28,Default,,0000,0000,0000,,designer to create a training pipeline Dialogue: 0,0:54:38.28,0:54:40.50,Default,,0000,0000,0000,,for your classification model Dialogue: 0,0:54:40.50,0:54:44.10,Default,,0000,0000,0000,,what must you do before you deploy this Dialogue: 0,0:54:44.10,0:54:45.96,Default,,0000,0000,0000,,model as a service you have to do Dialogue: 0,0:54:45.96,0:54:47.58,Default,,0000,0000,0000,,something before you deploy it what do Dialogue: 0,0:54:47.58,0:54:49.74,Default,,0000,0000,0000,,you think is the correct answer Dialogue: 0,0:54:49.74,0:54:52.74,Default,,0000,0000,0000,,is it a b or c Dialogue: 0,0:54:52.74,0:54:55.02,Default,,0000,0000,0000,,share your thoughts without in touch Dialogue: 0,0:54:55.02,0:54:58.38,Default,,0000,0000,0000,,with us in the chat and Dialogue: 0,0:54:58.38,0:55:00.18,Default,,0000,0000,0000,,um and I'm also going to give you some Dialogue: 0,0:55:00.18,0:55:02.94,Default,,0000,0000,0000,,like minutes to think of it before I Dialogue: 0,0:55:02.94,0:55:06.02,Default,,0000,0000,0000,,like tell you about Dialogue: 0,0:55:06.60,0:55:09.00,Default,,0000,0000,0000,,yeah so let me go through the possible Dialogue: 0,0:55:09.00,0:55:12.36,Default,,0000,0000,0000,,answers right so we have a uh create an Dialogue: 0,0:55:12.36,0:55:14.94,Default,,0000,0000,0000,,inference pipeline from the training Dialogue: 0,0:55:14.94,0:55:16.02,Default,,0000,0000,0000,,pipeline Dialogue: 0,0:55:16.02,0:55:19.26,Default,,0000,0000,0000,,uh B we have ADD and evaluate model Dialogue: 0,0:55:19.26,0:55:22.38,Default,,0000,0000,0000,,module to the training Pipeline and then Dialogue: 0,0:55:22.38,0:55:25.08,Default,,0000,0000,0000,,three we have uh clone the training Dialogue: 0,0:55:25.08,0:55:29.48,Default,,0000,0000,0000,,Pipeline with a different name Dialogue: 0,0:55:29.52,0:55:31.56,Default,,0000,0000,0000,,so what do you think is the correct Dialogue: 0,0:55:31.56,0:55:33.96,Default,,0000,0000,0000,,answer a b or c Dialogue: 0,0:55:33.96,0:55:36.66,Default,,0000,0000,0000,,uh also this time I think it's something Dialogue: 0,0:55:36.66,0:55:39.30,Default,,0000,0000,0000,,we mentioned both in the decks and in Dialogue: 0,0:55:39.30,0:55:41.96,Default,,0000,0000,0000,,the demo right Dialogue: 0,0:55:42.60,0:55:44.82,Default,,0000,0000,0000,,yes it is Dialogue: 0,0:55:44.82,0:55:48.72,Default,,0000,0000,0000,,it's something that I have done like two Dialogue: 0,0:55:48.72,0:55:51.80,Default,,0000,0000,0000,,like five minutes ago Dialogue: 0,0:55:51.80,0:55:57.20,Default,,0000,0000,0000,,it's real time real time what's Dialogue: 0,0:55:58.02,0:55:58.76,Default,,0000,0000,0000,,um Dialogue: 0,0:55:58.76,0:56:02.04,Default,,0000,0000,0000,,yeah so think about you need to deploy Dialogue: 0,0:56:02.04,0:56:05.46,Default,,0000,0000,0000,,uh the model as a service so uh if I'm Dialogue: 0,0:56:05.46,0:56:07.98,Default,,0000,0000,0000,,going to deploy model Dialogue: 0,0:56:07.98,0:56:10.38,Default,,0000,0000,0000,,um I cannot like evaluate the model Dialogue: 0,0:56:10.38,0:56:12.84,Default,,0000,0000,0000,,after deploying it right because I Dialogue: 0,0:56:12.84,0:56:14.94,Default,,0000,0000,0000,,cannot go into production if I'm not Dialogue: 0,0:56:14.94,0:56:17.58,Default,,0000,0000,0000,,sure I'm not satisfied over my model and Dialogue: 0,0:56:17.58,0:56:19.50,Default,,0000,0000,0000,,I'm not sure that my model is performing Dialogue: 0,0:56:19.50,0:56:20.28,Default,,0000,0000,0000,,well Dialogue: 0,0:56:20.28,0:56:23.46,Default,,0000,0000,0000,,so that's why I would go with Dialogue: 0,0:56:23.46,0:56:24.32,Default,,0000,0000,0000,,um Dialogue: 0,0:56:24.32,0:56:30.48,Default,,0000,0000,0000,,I would like exclude B from from my from Dialogue: 0,0:56:30.48,0:56:31.52,Default,,0000,0000,0000,,my answer Dialogue: 0,0:56:31.52,0:56:33.60,Default,,0000,0000,0000,,uh while Dialogue: 0,0:56:33.60,0:56:36.96,Default,,0000,0000,0000,,um thinking about C uh I don't see you I Dialogue: 0,0:56:36.96,0:56:39.48,Default,,0000,0000,0000,,didn't see you John cloning uh the Dialogue: 0,0:56:39.48,0:56:41.42,Default,,0000,0000,0000,,training Pipeline with a different name Dialogue: 0,0:56:41.42,0:56:44.64,Default,,0000,0000,0000,,uh so I I don't think this is the the Dialogue: 0,0:56:44.64,0:56:46.92,Default,,0000,0000,0000,,right answer Dialogue: 0,0:56:46.92,0:56:49.62,Default,,0000,0000,0000,,um while I've seen you creating an Dialogue: 0,0:56:49.62,0:56:52.86,Default,,0000,0000,0000,,inference pipeline uh yeah from the Dialogue: 0,0:56:52.86,0:56:55.02,Default,,0000,0000,0000,,training Pipeline and you just converted Dialogue: 0,0:56:55.02,0:56:59.28,Default,,0000,0000,0000,,it using uh a one-click button right Dialogue: 0,0:56:59.28,0:57:03.30,Default,,0000,0000,0000,,yeah that's correct so uh this is the Dialogue: 0,0:57:03.30,0:57:04.28,Default,,0000,0000,0000,,right answer Dialogue: 0,0:57:04.28,0:57:07.46,Default,,0000,0000,0000,,uh good job so I created an inference Dialogue: 0,0:57:07.46,0:57:11.28,Default,,0000,0000,0000,,real-time Pipeline and it has done it Dialogue: 0,0:57:11.28,0:57:13.44,Default,,0000,0000,0000,,like it finished it finished the job is Dialogue: 0,0:57:13.44,0:57:18.00,Default,,0000,0000,0000,,finished so uh we can now deploy Dialogue: 0,0:57:18.00,0:57:19.40,Default,,0000,0000,0000,,ment Dialogue: 0,0:57:19.40,0:57:21.50,Default,,0000,0000,0000,,yeah Dialogue: 0,0:57:21.50,0:57:25.34,Default,,0000,0000,0000,,exactly like on time Dialogue: 0,0:57:25.38,0:57:27.84,Default,,0000,0000,0000,,I like it finished like two seconds Dialogue: 0,0:57:27.84,0:57:30.86,Default,,0000,0000,0000,,three three four seconds ago Dialogue: 0,0:57:30.86,0:57:33.12,Default,,0000,0000,0000,,so uh Dialogue: 0,0:57:33.12,0:57:36.48,Default,,0000,0000,0000,,until like um Dialogue: 0,0:57:36.48,0:57:39.84,Default,,0000,0000,0000,,this is my job review so Dialogue: 0,0:57:39.84,0:57:43.26,Default,,0000,0000,0000,,uh like this is the job details that I Dialogue: 0,0:57:43.26,0:57:45.54,Default,,0000,0000,0000,,have already submitted it's just opening Dialogue: 0,0:57:45.54,0:57:48.12,Default,,0000,0000,0000,,and once it opens Dialogue: 0,0:57:48.12,0:57:50.18,Default,,0000,0000,0000,,um Dialogue: 0,0:57:50.40,0:57:52.74,Default,,0000,0000,0000,,like I don't know why it's so heavy Dialogue: 0,0:57:52.74,0:57:56.78,Default,,0000,0000,0000,,today it's not like that usually Dialogue: 0,0:57:58.74,0:58:01.02,Default,,0000,0000,0000,,yeah it's probably because you are also Dialogue: 0,0:58:01.02,0:58:06.00,Default,,0000,0000,0000,,showing your your screen on teams Dialogue: 0,0:58:06.00,0:58:08.16,Default,,0000,0000,0000,,okay so that's the bandwidth of your Dialogue: 0,0:58:08.16,0:58:10.74,Default,,0000,0000,0000,,connection is exactly do something here Dialogue: 0,0:58:10.74,0:58:13.74,Default,,0000,0000,0000,,because yeah finally Dialogue: 0,0:58:13.74,0:58:16.44,Default,,0000,0000,0000,,I can switch to my mobile internet if it Dialogue: 0,0:58:16.44,0:58:18.60,Default,,0000,0000,0000,,did it again so I will click on deploy Dialogue: 0,0:58:18.60,0:58:20.70,Default,,0000,0000,0000,,it's that simple I'll just click on Dialogue: 0,0:58:20.70,0:58:23.04,Default,,0000,0000,0000,,deploy and Dialogue: 0,0:58:23.04,0:58:25.62,Default,,0000,0000,0000,,I am going to deploy a new real-time Dialogue: 0,0:58:25.62,0:58:27.96,Default,,0000,0000,0000,,endpoint Dialogue: 0,0:58:27.96,0:58:30.30,Default,,0000,0000,0000,,so what I'm going to name it I'm Dialogue: 0,0:58:30.30,0:58:31.74,Default,,0000,0000,0000,,description and the compute type Dialogue: 0,0:58:31.74,0:58:33.72,Default,,0000,0000,0000,,everything is already mentioned for me Dialogue: 0,0:58:33.72,0:58:36.24,Default,,0000,0000,0000,,here so I'm just gonna copy and paste it Dialogue: 0,0:58:36.24,0:58:38.94,Default,,0000,0000,0000,,because we like we have we are running Dialogue: 0,0:58:38.94,0:58:41.28,Default,,0000,0000,0000,,out of time Dialogue: 0,0:58:41.28,0:58:45.68,Default,,0000,0000,0000,,so it's all Azure container instance Dialogue: 0,0:58:45.68,0:58:48.72,Default,,0000,0000,0000,,which is a containerization service also Dialogue: 0,0:58:48.72,0:58:51.06,Default,,0000,0000,0000,,both are for containerization but this Dialogue: 0,0:58:51.06,0:58:52.44,Default,,0000,0000,0000,,gives you something and this gives you Dialogue: 0,0:58:52.44,0:58:54.96,Default,,0000,0000,0000,,something else for the advanced options Dialogue: 0,0:58:54.96,0:58:57.42,Default,,0000,0000,0000,,it doesn't say for us to do anything so Dialogue: 0,0:58:57.42,0:59:00.42,Default,,0000,0000,0000,,we are just gonna click on deploy Dialogue: 0,0:59:00.42,0:59:05.22,Default,,0000,0000,0000,,and now we can test our endpoint from Dialogue: 0,0:59:05.22,0:59:07.86,Default,,0000,0000,0000,,the endpoints that we can find here so Dialogue: 0,0:59:07.86,0:59:11.46,Default,,0000,0000,0000,,it's in progress if I go here Dialogue: 0,0:59:11.46,0:59:13.80,Default,,0000,0000,0000,,under the assets I can find something Dialogue: 0,0:59:13.80,0:59:16.68,Default,,0000,0000,0000,,called endpoints and I can find the Dialogue: 0,0:59:16.68,0:59:18.60,Default,,0000,0000,0000,,real-time ones and the batch endpoints Dialogue: 0,0:59:18.60,0:59:22.02,Default,,0000,0000,0000,,and we have created a real-time endpoint Dialogue: 0,0:59:22.02,0:59:25.26,Default,,0000,0000,0000,,so we are going to find it under this uh Dialogue: 0,0:59:25.26,0:59:29.76,Default,,0000,0000,0000,,title so if I like click on it I should Dialogue: 0,0:59:29.76,0:59:32.64,Default,,0000,0000,0000,,be able to test it once it's ready Dialogue: 0,0:59:32.64,0:59:37.20,Default,,0000,0000,0000,,it's still like loading but this is the Dialogue: 0,0:59:37.20,0:59:40.98,Default,,0000,0000,0000,,input and this is the output that we Dialogue: 0,0:59:40.98,0:59:45.20,Default,,0000,0000,0000,,will get back so if I click on test and Dialogue: 0,0:59:45.20,0:59:49.92,Default,,0000,0000,0000,,from here I will input some data to the Dialogue: 0,0:59:49.92,0:59:50.90,Default,,0000,0000,0000,,endpoint Dialogue: 0,0:59:50.90,0:59:54.60,Default,,0000,0000,0000,,which are the patient information The Dialogue: 0,0:59:54.60,0:59:57.12,Default,,0000,0000,0000,,Columns that we have already seen in our Dialogue: 0,0:59:57.12,1:00:00.38,Default,,0000,0000,0000,,data set the patient ID the pregnancies Dialogue: 0,1:00:00.38,1:00:03.96,Default,,0000,0000,0000,,and of course of course I'm not gonna Dialogue: 0,1:00:03.96,1:00:05.94,Default,,0000,0000,0000,,enter the label that I'm trying to Dialogue: 0,1:00:05.94,1:00:08.10,Default,,0000,0000,0000,,predict so I'm not going to give him if Dialogue: 0,1:00:08.10,1:00:10.68,Default,,0000,0000,0000,,the patient is diabetic or not this end Dialogue: 0,1:00:10.68,1:00:13.20,Default,,0000,0000,0000,,point is to tell me this is the end Dialogue: 0,1:00:13.20,1:00:15.60,Default,,0000,0000,0000,,point or the URL is going to give me Dialogue: 0,1:00:15.60,1:00:17.64,Default,,0000,0000,0000,,back this information whether someone Dialogue: 0,1:00:17.64,1:00:22.68,Default,,0000,0000,0000,,has diabetes or he doesn't so if I input Dialogue: 0,1:00:22.68,1:00:24.78,Default,,0000,0000,0000,,these this data I'm just going to copy Dialogue: 0,1:00:24.78,1:00:27.78,Default,,0000,0000,0000,,it and go to my endpoint and click on Dialogue: 0,1:00:27.78,1:00:30.18,Default,,0000,0000,0000,,test I'm gonna give the result pack Dialogue: 0,1:00:30.18,1:00:32.36,Default,,0000,0000,0000,,which are the three columns that we have Dialogue: 0,1:00:32.36,1:00:35.52,Default,,0000,0000,0000,,defined inside our python script the Dialogue: 0,1:00:35.52,1:00:37.86,Default,,0000,0000,0000,,patient ID the diabetic prediction and Dialogue: 0,1:00:37.86,1:00:41.04,Default,,0000,0000,0000,,the probability the certainty of whether Dialogue: 0,1:00:41.04,1:00:45.72,Default,,0000,0000,0000,,someone is diabetic or not based on the Dialogue: 0,1:00:45.72,1:00:50.66,Default,,0000,0000,0000,,uh based on the prediction so that's it Dialogue: 0,1:00:50.66,1:00:54.36,Default,,0000,0000,0000,,and like uh I think that this is really Dialogue: 0,1:00:54.36,1:00:56.82,Default,,0000,0000,0000,,simple step to do you can do it on your Dialogue: 0,1:00:56.82,1:00:58.38,Default,,0000,0000,0000,,own you can test it Dialogue: 0,1:00:58.38,1:01:01.14,Default,,0000,0000,0000,,and I think that I have finished so Dialogue: 0,1:01:01.14,1:01:03.02,Default,,0000,0000,0000,,thank you Dialogue: 0,1:01:03.02,1:01:06.60,Default,,0000,0000,0000,,uh yes we are running out of time I I Dialogue: 0,1:01:06.60,1:01:09.78,Default,,0000,0000,0000,,just wanted to uh thank you John for for Dialogue: 0,1:01:09.78,1:01:12.30,Default,,0000,0000,0000,,this demo for going through all these Dialogue: 0,1:01:12.30,1:01:14.10,Default,,0000,0000,0000,,steps to Dialogue: 0,1:01:14.10,1:01:16.74,Default,,0000,0000,0000,,um create train a classification model Dialogue: 0,1:01:16.74,1:01:19.68,Default,,0000,0000,0000,,and also deploy it as a predictive Dialogue: 0,1:01:19.68,1:01:23.04,Default,,0000,0000,0000,,service and I encourage you all to go Dialogue: 0,1:01:23.04,1:01:25.08,Default,,0000,0000,0000,,back to the learn module Dialogue: 0,1:01:25.08,1:01:28.26,Default,,0000,0000,0000,,um and uh like depend all these topics Dialogue: 0,1:01:28.26,1:01:31.76,Default,,0000,0000,0000,,at your at your own pace and also maybe Dialogue: 0,1:01:31.76,1:01:34.80,Default,,0000,0000,0000,,uh do this demo on your own on your Dialogue: 0,1:01:34.80,1:01:37.14,Default,,0000,0000,0000,,subscription on your Azure for student Dialogue: 0,1:01:37.14,1:01:39.36,Default,,0000,0000,0000,,subscription Dialogue: 0,1:01:39.36,1:01:43.20,Default,,0000,0000,0000,,um and I would also like to recall that Dialogue: 0,1:01:43.20,1:01:46.26,Default,,0000,0000,0000,,this is part of a series of study Dialogue: 0,1:01:46.26,1:01:49.50,Default,,0000,0000,0000,,sessions of cloud skill challenge study Dialogue: 0,1:01:49.50,1:01:51.06,Default,,0000,0000,0000,,sessions Dialogue: 0,1:01:51.06,1:01:54.06,Default,,0000,0000,0000,,um so you will have more in the in the Dialogue: 0,1:01:54.06,1:01:57.54,Default,,0000,0000,0000,,in the following days and this is for Dialogue: 0,1:01:57.54,1:02:00.48,Default,,0000,0000,0000,,you to prepare let's say to to help you Dialogue: 0,1:02:00.48,1:02:04.88,Default,,0000,0000,0000,,in taking the a cloud skills challenge Dialogue: 0,1:02:04.88,1:02:07.04,Default,,0000,0000,0000,,which collect Dialogue: 0,1:02:07.04,1:02:10.80,Default,,0000,0000,0000,,a very interesting learn module that you Dialogue: 0,1:02:10.80,1:02:14.54,Default,,0000,0000,0000,,can use to scale up on various topics Dialogue: 0,1:02:14.54,1:02:18.36,Default,,0000,0000,0000,,and some of them are focused on AI and Dialogue: 0,1:02:18.36,1:02:20.82,Default,,0000,0000,0000,,ml so if you are interested in these Dialogue: 0,1:02:20.82,1:02:23.10,Default,,0000,0000,0000,,topics you can select these these learn Dialogue: 0,1:02:23.10,1:02:24.78,Default,,0000,0000,0000,,modules Dialogue: 0,1:02:24.78,1:02:27.66,Default,,0000,0000,0000,,um so let me also copy Dialogue: 0,1:02:27.66,1:02:29.82,Default,,0000,0000,0000,,um the link the short link to the Dialogue: 0,1:02:29.82,1:02:32.70,Default,,0000,0000,0000,,challenge in the chat uh remember that Dialogue: 0,1:02:32.70,1:02:34.98,Default,,0000,0000,0000,,you have time until the 13th of Dialogue: 0,1:02:34.98,1:02:37.98,Default,,0000,0000,0000,,September to take the challenge and also Dialogue: 0,1:02:37.98,1:02:40.44,Default,,0000,0000,0000,,remember that in October on the 7th of Dialogue: 0,1:02:40.44,1:02:43.02,Default,,0000,0000,0000,,October you have the you can join the Dialogue: 0,1:02:43.02,1:02:46.62,Default,,0000,0000,0000,,student the the student developer Summit Dialogue: 0,1:02:46.62,1:02:50.64,Default,,0000,0000,0000,,which is uh which will be a virtual or Dialogue: 0,1:02:50.64,1:02:53.22,Default,,0000,0000,0000,,in for some for some cases and hybrid Dialogue: 0,1:02:53.22,1:02:56.04,Default,,0000,0000,0000,,event so stay tuned because you will Dialogue: 0,1:02:56.04,1:02:58.56,Default,,0000,0000,0000,,have some surprises in the following Dialogue: 0,1:02:58.56,1:03:01.26,Default,,0000,0000,0000,,days and if you want to learn more about Dialogue: 0,1:03:01.26,1:03:03.48,Default,,0000,0000,0000,,this event you can check the Microsoft Dialogue: 0,1:03:03.48,1:03:08.10,Default,,0000,0000,0000,,Imaging cap Twitter page and stay tuned Dialogue: 0,1:03:08.10,1:03:11.46,Default,,0000,0000,0000,,so thank you everyone for uh for joining Dialogue: 0,1:03:11.46,1:03:13.08,Default,,0000,0000,0000,,this session today and thank you very Dialogue: 0,1:03:13.08,1:03:16.50,Default,,0000,0000,0000,,much Sean for co-hosting with with this Dialogue: 0,1:03:16.50,1:03:20.36,Default,,0000,0000,0000,,session with me it was a pleasure Dialogue: 0,1:03:21.84,1:03:24.12,Default,,0000,0000,0000,,thank you so much Carlotta for having me Dialogue: 0,1:03:24.12,1:03:26.58,Default,,0000,0000,0000,,with you today and thank you like for Dialogue: 0,1:03:26.58,1:03:28.08,Default,,0000,0000,0000,,giving me this opportunity to be with Dialogue: 0,1:03:28.08,1:03:30.18,Default,,0000,0000,0000,,you here Dialogue: 0,1:03:30.18,1:03:33.48,Default,,0000,0000,0000,,great I hope that uh yeah I hope that we Dialogue: 0,1:03:33.48,1:03:36.48,Default,,0000,0000,0000,,work again in the future sure I I hope Dialogue: 0,1:03:36.48,1:03:38.16,Default,,0000,0000,0000,,so as well Dialogue: 0,1:03:38.16,1:03:40.76,Default,,0000,0000,0000,,um so Dialogue: 0,1:03:44.10,1:03:46.50,Default,,0000,0000,0000,,bye bye speak to you soon Dialogue: 0,1:03:46.50,1:03:48.92,Default,,0000,0000,0000,,bye