0:00:00.180,0:00:01.940 【讲师】之前的视频里,我们介绍了 0:00:01.940,0:00:04.720 如何使用回归线,特别是基于样本数据的回归线的斜率 0:00:04.720,0:00:08.090 如何使用回归线,特别是基于样本数据的回归线的斜率 0:00:10.910,0:00:15.700 我们如何利用它来推断真实总量回归线的斜率 0:00:15.700,0:00:17.960 这个视频我们要讲的是 0:00:17.960,0:00:20.260 使用回归线的推理条件是什么 0:00:20.260,0:00:22.610 使用回归线的推理条件是什么 0:00:22.610,0:00:24.900 在某种程度上 0:00:24.900,0:00:27.280 和我们在做假设检验、均值和比例的置信区间 时考虑的的推理条件类似 0:00:27.280,0:00:30.320 和我们在做假设检验、均值和比例的置信区间 时考虑的的推理条件类似 0:00:30.320,0:00:33.920 和我们在做假设检验、均值和比例的置信区间 时考虑的的推理条件类似 0:00:33.920,0:00:36.890 但也会有一些新的条件 0:00:36.890,0:00:39.860 为了帮助我们记住这些条件 0:00:39.860,0:00:44.860 就总结为 LINER,L-I-N-E-R 0:00:46.950,0:00:50.500 好记对吧,和线性这个词 Linear 非常像 0:00:50.500,0:00:53.040 给 Liner 加个a,就是线性了 linear 0:00:53.040,0:00:54.670 这个小窍门很实用 0:00:54.670,0:00:57.140 因为我们学的就是线性回归嘛 0:00:57.140,0:01:01.240 其实这里的第一个 L 就是代表的线性(Linear) 0:01:01.240,0:01:05.000 第一个条件就是要求 0:01:05.000,0:01:08.620 总量中 x 和 y 两个变量之间是线性关系 0:01:08.620,0:01:11.290 总量中 x 和 y 两个变量之间是线性关系 0:01:11.290,0:01:12.710 写下来:x 和 y 之间是线性关系 0:01:13.690,0:01:14.750 写下来:x 和 y 之间是线性关系 0:01:15.670,0:01:16.853 写下来:x 和 y 之间是线性关系 0:01:18.360,0:01:19.310 写下来:x 和 y 之间是线性关系 0:01:20.230,0:01:21.690 写下来:x 和 y 之间是线性关系 0:01:21.690,0:01:23.950 写下来:x 和 y 之间是线性关系 0:01:23.950,0:01:25.910 写下来:x 和 y 之间是线性关系 0:01:25.910,0:01:28.920 现在,在很多情况下,你可能只需要假设这是你在考试中看到的情况,比如AP考试 0:01:28.920,0:01:31.270 0:01:31.270,0:01:33.950 0:01:33.950,0:01:36.400 0:01:36.400,0:01:37.720 0:01:37.720,0:01:38.600 0:01:38.600,0:01:41.100 0:01:41.100,0:01:42.810 0:01:42.810,0:01:45.660 0:01:45.660,0:01:47.250 0:01:47.250,0:01:50.150 0:01:50.150,0:01:53.290 0:01:53.290,0:01:55.560 0:01:55.560,0:01:57.530 0:01:57.530,0:01:59.960 0:01:59.960,0:02:01.980 0:02:01.980,0:02:04.070 0:02:04.070,0:02:05.830 0:02:05.830,0:02:09.180 0:02:09.180,0:02:11.910 0:02:11.910,0:02:13.430 0:02:13.430,0:02:18.200 0:02:18.200,0:02:20.010 0:02:20.010,0:02:23.710 0:02:23.710,0:02:26.070 0:02:26.070,0:02:28.140 0:02:28.140,0:02:30.230 0:02:30.230,0:02:32.610 0:02:32.610,0:02:35.170 0:02:35.170,0:02:37.580 0:02:37.580,0:02:39.590 0:02:39.590,0:02:42.160 0:02:42.160,0:02:43.820 0:02:43.820,0:02:44.880 0:02:44.880,0:02:46.670 0:02:46.670,0:02:48.410 0:02:48.410,0:02:50.500 0:02:50.500,0:02:54.810 0:02:54.810,0:02:57.270 0:02:57.270,0:03:00.033 0:03:00.870,0:03:05.770 0:03:05.770,0:03:06.603 0:03:06.603,0:03:08.810 0:03:08.810,0:03:10.910 0:03:10.910,0:03:11.870 0:03:11.870,0:03:13.990 0:03:13.990,0:03:16.860 0:03:16.860,0:03:21.300 0:03:21.300,0:03:23.460 0:03:23.460,0:03:24.530 0:03:24.530,0:03:25.380 0:03:25.380,0:03:27.760 0:03:27.760,0:03:29.750 0:03:29.750,0:03:32.470 0:03:32.470,0:03:34.390 0:03:34.390,0:03:36.970 0:03:36.970,0:03:38.810 0:03:38.810,0:03:42.790 0:03:42.790,0:03:45.090 0:03:45.090,0:03:46.390 0:03:46.390,0:03:48.670 0:03:48.670,0:03:51.250 0:03:51.250,0:03:52.870 0:03:52.870,0:03:54.520 0:03:54.520,0:03:56.360 0:03:56.360,0:03:59.880 0:03:59.880,0:04:02.580 0:04:02.580,0:04:03.620 0:04:03.620,0:04:06.890 0:04:06.890,0:04:10.430 0:04:10.430,0:04:12.300 0:04:12.300,0:04:14.600 0:04:14.600,0:04:17.170 0:04:17.170,0:04:19.200 0:04:19.200,0:04:23.040 0:04:23.040,0:04:25.760 0:04:25.760,0:04:27.140 0:04:27.140,0:04:28.270 0:04:28.270,0:04:30.470 0:04:30.470,0:04:32.960 0:04:32.960,0:04:36.130 0:04:36.130,0:04:38.720 0:04:38.720,0:04:40.910 0:04:40.910,0:04:42.970 0:04:42.970,0:04:46.010 0:04:46.010,0:04:47.040 0:04:47.040,0:04:49.763