WEBVTT 00:00:00.534 --> 00:00:05.965 -可微函数x和y由以下方程关联 00:00:05.965 --> 00:00:08.715 Sin(x)+Cos(y) 00:00:09.578 --> 00:00:12.479 将等于2的平方根 00:00:12.479 --> 00:00:17.897 它也告诉我们dx/dt=5 00:00:17.897 --> 00:00:25.145 他也告诉我们要在当y=π/4且x大于0小于π/2时 00:00:25.145 --> 00:00:29.789 求出基于t的y的导数 00:00:29.789 --> 00:00:32.365 所以他告诉了我们基于t的x的导数 00:00:32.365 --> 00:00:34.685 并且我们要找到 00:00:34.685 --> 00:00:37.134 基于t的y的导数 00:00:37.134 --> 00:00:41.301 认为x和y都是基于t的函数的假设是合理的 00:00:42.403 --> 00:00:45.751 所以你甚至可以在这将函数重新列一遍 00:00:45.751 --> 00:00:48.584 你可以将其重新写为sin(x),其中 00:00:50.683 --> 00:00:53.040 x是t的函数 00:00:53.040 --> 00:00:53.957 加上 00:00:55.815 --> 00:00:58.398 cos(y),y也是t的函数 00:00:59.499 --> 00:01:02.082 整个式子等于2的平方根 00:01:02.920 --> 00:01:04.542 现在你可能有些困惑 00:01:04.542 --> 00:01:06.376 你未曾将x设为具有3个未知量的函数 00:01:06.376 --> 00:01:10.068 或你未曾将y当做一个除了x外另有变量的函数 00:01:10.068 --> 00:01:11.740 但请记住,x和y仅是自变量 00:01:11.740 --> 00:01:15.419 这可以是f(t),那可以是g(t) 00:01:15.419 --> 00:01:17.605 而不是x(t)或y(t) 00:01:17.605 --> 00:01:19.503 这也许会让你觉得自然些 00:01:19.503 --> 00:01:23.170 不必说如果我们要求出dt 00:01:24.186 --> 00:01:29.952 我们要做的是对这个方程两边的 t 求导 00:01:29.952 --> 00:01:31.357 所以让我们处理它吧 00:01:31.357 --> 00:01:33.303 所以我们将从等式左侧入手 00:01:33.303 --> 00:01:38.035 所以我们将把它与 t 相关联,对 t 取它的导数。 00:01:38.035 --> 00:01:41.001 我们将对t取它的导数 00:01:41.001 --> 00:01:42.338 接着我们将取等式右侧这一常数项 00:01:42.338 --> 00:01:46.547 对t的导数 00:01:46.547 --> 00:01:49.764 所以我们逐一思考这些式子 00:01:49.764 --> 00:01:51.444 所以这是什么呢 00:01:51.444 --> 00:01:53.114 让我换种颜色 00:01:53.114 --> 00:01:56.622 我正在用水笔解的式子 00:01:56.622 --> 00:01:58.245 我该如何写它呢 00:01:58.245 --> 00:02:00.405 所以我取对t的函数 00:02:00.405 --> 00:02:04.918 我有某数的sin值,其自身为关于t的函数 00:02:04.918 --> 00:02:07.768 所以我将在这里应用链式法则 00:02:07.768 --> 00:02:14.650 首先,我将求sinx的导数 00:02:16.508 --> 00:02:18.714 我将之写作sinx(t)) 00:02:18.714 --> 00:02:22.365 但为了简化,我将其恢复为原式 00:02:22.365 --> 00:02:25.244 接着我将其与x的导数相乘 00:02:25.244 --> 00:02:28.766 你可以说,对于t的导数 00:02:28.766 --> 00:02:32.780 乘上dx/dt 00:02:32.780 --> 00:02:34.506 这和你之前处理链式法则相比, 00:02:34.506 --> 00:02:35.594 可能有些反常 00:02:35.594 --> 00:02:38.737 之前我们只处理与x或y相关的 00:02:38.737 --> 00:02:41.272 但这就是现在发生的,我将取sin外的 00:02:41.272 --> 00:02:43.565 对于某值的某值的导数, 00:02:43.565 --> 00:02:46.547 在这种情况下,即为x 00:02:46.547 --> 00:02:48.503 接着我将求某值的导数 00:02:48.503 --> 00:02:51.415 在这种情况下,即为x对于t的导数 00:02:51.415 --> 00:02:53.927 我们可以对第二个多项式 00:02:53.927 --> 00:02:56.010 用同样的方式处理 00:02:56.988 --> 00:03:01.216 所以我将求d/dy乘上, 00:03:01.216 --> 00:03:04.327 我猜你将说 00:03:04.327 --> 00:03:05.577 cos(y) 00:03:07.692 --> 00:03:09.206 接着我将之相乘: 00:03:09.206 --> 00:03:12.873 乘上对于t的y的导数 00:03:14.264 --> 00:03:17.447 接着它们整体将等于多少呢 00:03:17.447 --> 00:03:20.742 对于t的常数的导数 00:03:20.742 --> 00:03:22.162 根号2是个常数 00:03:22.162 --> 00:03:23.912 将不会随t的变化而变化 00:03:23.912 --> 00:03:27.385 所以它的导数,其变化率即为0 00:03:27.385 --> 00:03:29.632 好的,现在我们求到了 00:03:29.632 --> 00:03:31.357 所有的值 00:03:31.357 --> 00:03:33.681 所以第一步,sin(x)的导数为 00:03:33.681 --> 00:03:38.277 cos(x)乘x对于t的导数 00:03:38.277 --> 00:03:40.270 我将在这写下 00:03:40.270 --> 00:03:42.207 x对于t导数 00:03:42.207 --> 00:03:44.964 接着我们将有,这里是加上 00:03:44.964 --> 00:03:47.157 y对于t的导数 00:03:47.157 --> 00:03:51.010 所以加上y对于t的导数 00:03:51.010 --> 00:03:52.445 我在这把顺序调换了下 00:03:52.445 --> 00:03:54.467 所以它将提前 00:03:54.467 --> 00:03:58.372 现在,对于y的cos(y)的导数是多少呢? 00:03:58.372 --> 00:04:01.336 其值为-sin(y) 00:04:01.336 --> 00:04:05.265 接着,让我先把sin(y)写在这 00:04:05.265 --> 00:04:07.118 再加个负号 00:04:07.118 --> 00:04:10.118 将这(符号)擦除并换为减号 00:04:11.600 --> 00:04:15.100 而这依旧将等于0 00:04:16.062 --> 00:04:18.743 因此我们可以求出什么呢 00:04:18.743 --> 00:04:21.785 它告诉我们x对于t的导数的值为5 00:04:21.785 --> 00:04:25.398 他就在这告诉了我们 00:04:25.398 --> 00:04:27.481 所以这将等于5 00:04:29.088 --> 00:04:32.679 我们想求出对于t的y的导数的值 00:04:32.679 --> 00:04:36.145 他告诉了我们y的值,π/4 00:04:36.145 --> 00:04:40.312 这里,y是π/4,所以写下π/4 00:04:41.606 --> 00:04:43.791 所以我们看一下,我们得求出它 00:04:43.791 --> 00:04:45.725 我们仍有两个未知量 00:04:45.725 --> 00:04:47.449 我们不知道x的值,我们也不知道 00:04:47.449 --> 00:04:49.580 y对于t的导数值 00:04:49.580 --> 00:04:51.101 那就是我们所需求的值 00:04:51.101 --> 00:04:52.467 所以x的值是多少呢? 00:04:52.467 --> 00:04:55.420 当y等于π/4时,x的值是多少呢 00:04:55.420 --> 00:04:56.439 好的,为了求出它, 00:04:56.439 --> 00:05:00.222 我们将回到原式 00:05:00.222 --> 00:05:03.754 所以当y等于π/4时,你会得到 00:05:03.754 --> 00:05:04.847 让我把它写下 00:05:04.847 --> 00:05:05.680 sin(x),加上 00:05:07.391 --> 00:05:08.808 cos(π/4), 00:05:10.716 --> 00:05:13.984 (cos(π/4))的值为二分之根号二 00:05:13.984 --> 00:05:15.901 cos(π/4) 00:05:17.593 --> 00:05:20.936 我们可以转化为我们(熟悉的角度)或用单位圆解决 00:05:20.936 --> 00:05:22.558 我们正处于第一象限中, 00:05:22.558 --> 00:05:24.160 如果我们以角度制思考,它的值为45° 00:05:24.160 --> 00:05:28.067 它将等于二分之根号二 00:05:28.067 --> 00:05:30.579 我们可从等式两侧同时减去二分之根号二, 00:05:30.579 --> 00:05:32.852 我们将的值 00:05:32.852 --> 00:05:37.709 sin(x)的值为,好的,如果你从根号二中减去 00:05:37.709 --> 00:05:39.469 二分之根号二, 00:05:39.469 --> 00:05:40.764 你将减去它的一半 00:05:40.764 --> 00:05:42.223 所以你仍留有它的一半 00:05:42.223 --> 00:05:44.709 所以就是二分之根号二 00:05:44.709 --> 00:05:48.718 所以,x的值是多少呢,我将取它的sin值 00:05:48.718 --> 00:05:50.768 记住,这是在角度制中 00:05:50.768 --> 00:05:52.360 如果我们用单位圆思考,它将在第一象限。 00:05:52.360 --> 00:05:54.775 在这情况下x将是一个角, 00:05:54.775 --> 00:05:56.085 就在这 00:05:56.085 --> 00:05:59.376 所以那将是又一次的π/4 00:05:59.376 --> 00:06:03.157 所以x的值为π/4 00:06:03.157 --> 00:06:05.829 当y等于π/4 00:06:05.829 --> 00:06:09.475 00:06:09.475 --> 00:06:11.437 00:06:11.437 --> 00:06:13.463 00:06:13.463 --> 00:06:15.630 00:06:17.521 --> 00:06:19.354 00:06:22.214 --> 00:06:23.047 00:06:24.268 --> 00:06:26.968 00:06:26.968 --> 00:06:28.767 00:06:28.767 --> 00:06:31.017 00:06:32.562 --> 00:06:33.979 00:06:35.398 --> 00:06:38.523 00:06:38.523 --> 00:06:40.714 00:06:40.714 --> 00:06:43.454 00:06:43.454 --> 00:06:45.108 00:06:45.108 --> 00:06:46.927 00:06:46.927 --> 00:06:49.677 00:06:49.677 --> 00:06:53.844 00:06:54.754 --> 00:06:57.583 00:06:57.583 --> 00:07:00.878 00:07:00.878 --> 00:07:02.239 00:07:02.239 --> 00:07:04.549 00:07:04.549 --> 00:07:05.884 00:07:05.884 --> 00:07:08.179 00:07:08.179 --> 00:07:10.035 00:07:10.035 --> 00:07:11.283 00:07:11.283 --> 00:07:13.232 00:07:13.232 --> 00:07:15.495 00:07:15.495 --> 00:07:17.751 00:07:17.751 --> 00:07:19.842 00:07:19.842 --> 00:07:23.070 00:07:23.070 --> 00:07:26.627 00:07:26.627 --> 00:07:28.044 00:07:29.558 --> 00:07:30.732 00:07:30.732 --> 00:07:33.648 00:07:33.648 --> 00:07:37.815 00:07:38.684 --> 00:07:42.294 00:07:42.294 --> 00:07:44.656 00:07:44.656 --> 00:07:47.999 00:07:47.999 --> 00:07:50.166