1 00:00:00,534 --> 00:00:05,965 -可微函数x和y由以下方程关联 2 00:00:05,965 --> 00:00:08,715 Sin(x)+Cos(y) 3 00:00:09,578 --> 00:00:12,479 将等于2的平方根 4 00:00:12,479 --> 00:00:17,897 它也告诉我们dx/dt=5 5 00:00:17,897 --> 00:00:25,145 他也告诉我们要在当y=π/4且x大于0小于π/2时 6 00:00:25,145 --> 00:00:29,789 求出基于t的y的导数 7 00:00:29,789 --> 00:00:32,365 所以他告诉了我们基于t的x的导数 8 00:00:32,365 --> 00:00:34,685 并且我们要找到 9 00:00:34,685 --> 00:00:37,134 基于t的y的导数 10 00:00:37,134 --> 00:00:41,301 认为x和y都是基于t的函数的假设是合理的 11 00:00:42,403 --> 00:00:45,751 所以你甚至可以在这将函数重新列一遍 12 00:00:45,751 --> 00:00:48,584 你可以将其重新写为sin(x),其中 13 00:00:50,683 --> 00:00:53,040 x是t的函数 14 00:00:53,040 --> 00:00:53,957 加上 15 00:00:55,815 --> 00:00:58,398 cos(y),y也是t的函数 16 00:00:59,499 --> 00:01:02,082 整个式子等于2的平方根 17 00:01:02,920 --> 00:01:04,542 现在你可能有些困惑 18 00:01:04,542 --> 00:01:06,376 你未曾将x设为具有3个未知量的函数 19 00:01:06,376 --> 00:01:10,068 或你未曾将y当做一个除了x外另有变量的函数 20 00:01:10,068 --> 00:01:11,740 但请记住,x和y仅是自变量 21 00:01:11,740 --> 00:01:15,419 这可以是f(t),那可以是g(t) 22 00:01:15,419 --> 00:01:17,605 而不是x(t)或y(t) 23 00:01:17,605 --> 00:01:19,503 这也许会让你觉得自然些 24 00:01:19,503 --> 00:01:23,170 不必说如果我们要求出dt 25 00:01:24,186 --> 00:01:29,952 我们要做的是对这个方程两边的 t 求导 26 00:01:29,952 --> 00:01:31,357 所以让我们处理它吧 27 00:01:31,357 --> 00:01:33,303 所以我们将从等式左侧入手 28 00:01:33,303 --> 00:01:38,035 所以我们将把它与 t 相关联,对 t 取它的导数。 29 00:01:38,035 --> 00:01:41,001 我们将对t取它的导数 30 00:01:41,001 --> 00:01:42,338 接着我们将取等式右侧这一常数项 31 00:01:42,338 --> 00:01:46,547 对t的导数 32 00:01:46,547 --> 00:01:49,764 所以我们逐一思考这些式子 33 00:01:49,764 --> 00:01:51,444 所以这是什么呢 34 00:01:51,444 --> 00:01:53,114 让我换种颜色 35 00:01:53,114 --> 00:01:56,622 我正在用水笔解的式子 36 00:01:56,622 --> 00:01:58,245 我该如何写它呢 37 00:01:58,245 --> 00:02:00,405 所以我取对t的函数 38 00:02:00,405 --> 00:02:04,918 我有某数的sin值,其自身为关于t的函数 39 00:02:04,918 --> 00:02:07,768 所以我将在这里应用链式法则 40 00:02:07,768 --> 00:02:14,650 首先,我将求sinx的导数 41 00:02:16,508 --> 00:02:18,714 我将之写作sinx(t)) 42 00:02:18,714 --> 00:02:22,365 但为了简化,我将其恢复为原式 43 00:02:22,365 --> 00:02:25,244 接着我将其与x的导数相乘 44 00:02:25,244 --> 00:02:28,766 你可以说,对于t的导数 45 00:02:28,766 --> 00:02:32,780 乘上dx/dt 46 00:02:32,780 --> 00:02:34,506 这和你之前处理链式法则相比, 47 00:02:34,506 --> 00:02:35,594 可能有些反常 48 00:02:35,594 --> 00:02:38,737 之前我们只处理与x或y相关的 49 00:02:38,737 --> 00:02:41,272 但这就是现在发生的,我将取sin外的 50 00:02:41,272 --> 00:02:43,565 对于某值的某值的导数, 51 00:02:43,565 --> 00:02:46,547 在这种情况下,即为x 52 00:02:46,547 --> 00:02:48,503 接着我将求某值的导数 53 00:02:48,503 --> 00:02:51,415 在这种情况下,即为x对于t的导数 54 00:02:51,415 --> 00:02:53,927 我们可以对第二个多项式 55 00:02:53,927 --> 00:02:56,010 用同样的方式处理 56 00:02:56,988 --> 00:03:01,216 所以我将求d/dy乘上, 57 00:03:01,216 --> 00:03:04,327 我猜你将说 58 00:03:04,327 --> 00:03:05,577 cos(y) 59 00:03:07,692 --> 00:03:09,206 接着我将之相乘: 60 00:03:09,206 --> 00:03:12,873 乘上对于t的y的导数 61 00:03:14,264 --> 00:03:17,447 接着它们整体将等于多少呢 62 00:03:17,447 --> 00:03:20,742 对于t的常数的导数 63 00:03:20,742 --> 00:03:22,162 根号2是个常数 64 00:03:22,162 --> 00:03:23,912 将不会随t的变化而变化 65 00:03:23,912 --> 00:03:27,385 所以它的导数,其变化率即为0 66 00:03:27,385 --> 00:03:29,632 好的,现在我们求到了 67 00:03:29,632 --> 00:03:31,357 所有的值 68 00:03:31,357 --> 00:03:33,681 所以第一步,sin(x)的导数为 69 00:03:33,681 --> 00:03:38,277 cos(x)乘x对于t的导数 70 00:03:38,277 --> 00:03:40,270 我将在这写下 71 00:03:40,270 --> 00:03:42,207 x对于t导数 72 00:03:42,207 --> 00:03:44,964 接着我们将有,这里是加上 73 00:03:44,964 --> 00:03:47,157 y对于t的导数 74 00:03:47,157 --> 00:03:51,010 所以加上y对于t的导数 75 00:03:51,010 --> 00:03:52,445 我在这把顺序调换了下 76 00:03:52,445 --> 00:03:54,467 所以它将提前 77 00:03:54,467 --> 00:03:58,372 现在,对于y的cos(y)的导数是多少呢? 78 00:03:58,372 --> 00:04:01,336 其值为-sin(y) 79 00:04:01,336 --> 00:04:05,265 接着,让我先把sin(y)写在这 80 00:04:05,265 --> 00:04:07,118 再加个负号 81 00:04:07,118 --> 00:04:10,118 将这(符号)擦除并换为减号 82 00:04:11,600 --> 00:04:15,100 而这依旧将等于0 83 00:04:16,062 --> 00:04:18,743 因此我们可以求出什么呢 84 00:04:18,743 --> 00:04:21,785 它告诉我们x对于t的导数的值为5 85 00:04:21,785 --> 00:04:25,398 他就在这告诉了我们 86 00:04:25,398 --> 00:04:27,481 所以这将等于5 87 00:04:29,088 --> 00:04:32,679 我们想求出对于t的y的导数的值 88 00:04:32,679 --> 00:04:36,145 他告诉了我们y的值,π/4 89 00:04:36,145 --> 00:04:40,312 这里,y是π/4,所以写下π/4 90 00:04:41,606 --> 00:04:43,791 所以我们看一下,我们得求出它 91 00:04:43,791 --> 00:04:45,725 我们仍有两个未知量 92 00:04:45,725 --> 00:04:47,449 我们不知道x的值,我们也不知道 93 00:04:47,449 --> 00:04:49,580 y对于t的导数值 94 00:04:49,580 --> 00:04:51,101 那就是我们所需求的值 95 00:04:51,101 --> 00:04:52,467 所以x的值是多少呢? 96 00:04:52,467 --> 00:04:55,420 当y等于π/4时,x的值是多少呢 97 00:04:55,420 --> 00:04:56,439 好的,为了求出它, 98 00:04:56,439 --> 00:05:00,222 我们将回到原式 99 00:05:00,222 --> 00:05:03,754 所以当y等于π/4时,你会得到 100 00:05:03,754 --> 00:05:04,847 让我把它写下 101 00:05:04,847 --> 00:05:05,680 sin(x),加上 102 00:05:07,391 --> 00:05:08,808 cos(π/4), 103 00:05:10,716 --> 00:05:13,984 (cos(π/4))的值为二分之根号二 104 00:05:13,984 --> 00:05:15,901 cos(π/4) 105 00:05:17,593 --> 00:05:20,936 我们可以转化为我们(熟悉的角度)或用单位圆解决 106 00:05:20,936 --> 00:05:22,558 我们正处于第一象限中, 107 00:05:22,558 --> 00:05:24,160 如果我们以角度制思考,它的值为45° 108 00:05:24,160 --> 00:05:28,067 它将等于二分之根号二 109 00:05:28,067 --> 00:05:30,579 我们可从等式两侧同时减去二分之根号二, 110 00:05:30,579 --> 00:05:32,852 我们将的值 111 00:05:32,852 --> 00:05:37,709 sin(x)的值为,好的,如果你从根号二中减去 112 00:05:37,709 --> 00:05:39,469 二分之根号二, 113 00:05:39,469 --> 00:05:40,764 你将减去它的一半 114 00:05:40,764 --> 00:05:42,223 所以你仍留有它的一半 115 00:05:42,223 --> 00:05:44,709 所以就是二分之根号二 116 00:05:44,709 --> 00:05:48,718 所以,x的值是多少呢,我将取它的sin值 117 00:05:48,718 --> 00:05:50,768 记住,这是在角度制中 118 00:05:50,768 --> 00:05:52,360 如果我们用单位圆思考,它将在第一象限。 119 00:05:52,360 --> 00:05:54,775 在这情况下x将是一个角, 120 00:05:54,775 --> 00:05:56,085 就在这 121 00:05:56,085 --> 00:05:59,376 所以那将是又一次的π/4 122 00:05:59,376 --> 00:06:03,157 所以x的值为π/4 123 00:06:03,157 --> 00:06:05,829 当y等于π/4时 124 00:06:05,829 --> 00:06:09,475 我们知道了这也是π/4 125 00:06:09,475 --> 00:06:11,437 所以让我把它重写一遍 126 00:06:11,437 --> 00:06:13,463 因为这有点乱了 127 00:06:13,463 --> 00:06:15,630 所以我们得到了五倍的 128 00:06:17,521 --> 00:06:19,354 π/4的cos值, 129 00:06:22,214 --> 00:06:23,047 减去,dy/dt, 130 00:06:24,268 --> 00:06:26,968 y对于t的导数 131 00:06:26,968 --> 00:06:28,767 我们刚求出它的值 132 00:06:28,767 --> 00:06:31,017 乘上π/4的sin值 133 00:06:32,562 --> 00:06:33,979 得0 134 00:06:35,398 --> 00:06:38,523 让我们在这里打上括号, 135 00:06:38,523 --> 00:06:40,714 以方便区分这些式子 136 00:06:40,714 --> 00:06:43,454 好的,现在我们来看 137 00:06:43,454 --> 00:06:45,108 现在只是一些简单的代数了 138 00:06:45,108 --> 00:06:46,927 cos(π/4) 139 00:06:46,927 --> 00:06:49,677 我们知道其值为二分之根号二 140 00:06:49,677 --> 00:06:53,844 sin(π/4)的值也是二分之根号二 141 00:06:54,754 --> 00:07:00,878 好现在我们看,如果同时从等式两侧除去二分之根号二会如何呢 142 00:07:00,878 --> 00:07:02,239 好的,那将告诉我们什么呢 143 00:07:02,239 --> 00:07:08,179 二分之根号二除以二分之根号二 144 00:07:08,179 --> 00:07:10,035 将等于1 145 00:07:10,035 --> 00:07:11,283 二分之根号二除以二分之根号二 146 00:07:11,283 --> 00:07:13,232 将等于1 147 00:07:13,232 --> 00:07:15,495 接着0除以二分之根号二 148 00:07:15,495 --> 00:07:17,751 也将等于0 149 00:07:17,751 --> 00:07:19,842 整个式子将简化为 150 00:07:19,842 --> 00:07:23,070 5乘1,就是5 151 00:07:23,070 --> 00:07:28,044 减去y对于t的导数,将等于0 152 00:07:29,558 --> 00:07:30,732 现在你求出了它的值 153 00:07:30,732 --> 00:07:33,648 你在等式两边同时加上y对于t的导数 154 00:07:33,648 --> 00:07:37,815 接着我们就得到y对于t的导数的值为5 155 00:07:38,684 --> 00:07:42,294 当其他条件都满足时 156 00:07:42,294 --> 00:07:44,656 即当x对于t的导数为5, 157 00:07:44,656 --> 00:07:50,166 且y的值为π/4时