1 00:00:00,950 --> 00:00:02,160 你好 2 00:00:02,160 --> 00:00:05,230 让我们一起做一下关于对数的练习 3 00:00:05,230 --> 00:00:07,700 好,我们来快速回顾一下什么是对数 4 00:00:07,700 --> 00:00:19,230 如果我写,以x为底的a对数是 5 00:00:19,230 --> 00:00:22,020 等于,随便说吧,n 6 00:00:22,020 --> 00:00:23,550 这是什么意思 7 00:00:23,550 --> 00:00:35,800 这就是说x的n次方等于a 8 00:00:35,800 --> 00:00:37,880 我想我们已经知道这点 9 00:00:37,880 --> 00:00:40,150 我们已经在对数视频上知道这点 10 00:00:40,150 --> 00:00:42,860 所以要意识到这在你计算的时候很重要 11 00:00:42,860 --> 00:00:49,170 一个对数式,比方说以x为底的a的对数,它的答案是 12 00:00:49,170 --> 00:00:52,350 当你计算时,你得到的是,一个幂 13 00:00:52,350 --> 00:00:54,231 这个n真的就是个幂 14 00:00:54,231 --> 00:00:56,820 这也等同于这个东西 15 00:00:56,820 --> 00:00:58,910 你也可以写成这种形式 16 00:00:58,910 --> 00:01:02,190 因为n等于这个东西,你可以 17 00:01:02,190 --> 00:01:10,140 有点混乱,写成x的以x为底的a的对数次方 18 00:01:10,140 --> 00:01:13,930 等于a 19 00:01:13,930 --> 00:01:17,000 我所做的就是用这个等式代替n 20 00:01:17,000 --> 00:01:19,530 我写成这种形式是因为我想你 21 00:01:19,530 --> 00:01:22,580 真的明白这个写法 22 00:01:22,580 --> 00:01:24,390 当你计算时,这个对数,它 23 00:01:24,390 --> 00:01:25,745 就是一个指数 24 00:01:25,745 --> 00:01:27,420 还有,我们将要把这个写法 25 00:01:27,420 --> 00:01:29,910 这就是所有对数 26 00:01:29,910 --> 00:01:32,380 性质的来历 27 00:01:32,380 --> 00:01:35,130 我想要下一步做的是 28 00:01:35,130 --> 00:01:37,760 我想在对数性质上 29 00:01:37,760 --> 00:01:38,540 再玩味玩味 30 00:01:38,540 --> 00:01:40,405 然后我就此总结,然后 31 00:01:40,405 --> 00:01:41,120 擦干净 32 00:01:41,120 --> 00:01:45,100 不过我想展示以下人们当初 33 00:01:45,100 --> 00:01:47,040 怎样发现这个东西的 34 00:01:47,040 --> 00:01:52,960 拿x当例子,让我换一种颜色 35 00:01:52,960 --> 00:01:55,600 我认为这会有趣些 36 00:01:55,600 --> 00:02:05,190 举例说,x的l次方等于a 37 00:02:05,190 --> 00:02:07,680 如果我们写成对数的形式 38 00:02:07,680 --> 00:02:14,900 我们可以写成 39 00:02:14,900 --> 00:02:19,410 以x为底的a的对数等于l,对吧 40 00:02:19,410 --> 00:02:22,530 我只是抄写一次上面的信息 41 00:02:22,530 --> 00:02:25,010 现在,让我换一种颜色 42 00:02:25,010 --> 00:02:33,100 如果我说x的m次方等于b 43 00:02:33,100 --> 00:02:34,620 一样的道理,我只要改变字母 44 00:02:34,620 --> 00:02:41,980 这就是说以x为底的b的对数是 45 00:02:41,980 --> 00:02:43,730 等于m,对吧 46 00:02:43,730 --> 00:02:46,280 我只是做跟这一行同样的事 47 00:02:46,280 --> 00:02:47,452 我要换一种颜色 48 00:02:47,452 --> 00:02:49,620 让我们继续,看有什么发生 49 00:02:49,620 --> 00:02:52,770 让我换一种颜色 50 00:02:56,380 --> 00:03:03,010 打个比方,x的n次方 51 00:03:03,710 --> 00:03:04,710 但是你会看到 52 00:03:04,710 --> 00:03:12,360 x的n次方等于a乘以b 53 00:03:12,360 --> 00:03:15,260 x的n次方等于a乘以b 54 00:03:15,260 --> 00:03:22,730 这就是说 55 00:03:22,730 --> 00:03:26,420 以x为底的ab的对数 56 00:03:26,420 --> 00:03:28,460 那我们可以怎样做呢? 57 00:03:28,460 --> 00:03:31,010 我们从这里开始 58 00:03:31,010 --> 00:03:33,420 x的n次方等于a乘以b 59 00:03:33,420 --> 00:03:35,670 那我怎样改写呢? 60 00:03:35,670 --> 00:03:38,910 a是这个 61 00:03:38,910 --> 00:03:41,670 b是这个,对吧? 62 00:03:41,670 --> 00:03:43,010 那我们改成这样子 63 00:03:43,010 --> 00:03:49,770 我们已知x的n次方等于a 64 00:03:49,770 --> 00:03:51,480 a是这个 65 00:03:51,480 --> 00:03:55,120 x 66 00:03:55,120 --> 00:03:57,370 x的l次方 67 00:03:57,370 --> 00:03:59,500 x的l次方 68 00:03:59,500 --> 00:04:01,190 乘以b 69 00:04:01,190 --> 00:04:04,740 b是x的‘m次方,对吧? 70 00:04:04,740 --> 00:04:07,380 现在不做任何花俏的事 71 00:04:07,380 --> 00:04:09,320 x的l次方乘以x的m次方等于什么呢? 72 00:04:09,320 --> 00:04:13,730 从指数运算,我们知道 73 00:04:13,730 --> 00:04:17,390 当你的底数一样 74 00:04:17,390 --> 00:04:19,025 指数不同时,你只要将指数相加 75 00:04:19,025 --> 00:04:22,830 那就是等于,让我换一种中立的颜色 76 00:04:22,830 --> 00:04:24,660 我不知道这样说是否正确 77 00:04:24,660 --> 00:04:25,300 你会得到 78 00:04:25,300 --> 00:04:27,560 当你有相同的底数,又在做乘法 79 00:04:27,560 --> 00:04:28,930 你只要将指数相加 80 00:04:28,930 --> 00:04:32,390 等于x的l+m次方 81 00:04:32,390 --> 00:04:33,870 我想换一种颜色,因为这更好 82 00:04:33,870 --> 00:04:39,590 l,l+m 83 00:04:39,590 --> 00:04:42,520 经常换颜色有点烦 84 00:04:42,520 --> 00:04:43,820 你知道我的意思的 85 00:04:43,820 --> 00:04:47,590 所以,x的n次方等于x的l+m次方 86 00:04:47,590 --> 00:04:49,790 让我把x写在这儿 87 00:04:49,790 --> 00:04:51,350 oh,我想用绿色 88 00:04:51,350 --> 00:04:53,530 x的l+n次方 89 00:04:53,530 --> 00:04:54,050 那我们知道什么呢? 90 00:04:54,050 --> 00:04:58,980 我们知道x的n次方等于x的l+m次方 91 00:04:58,980 --> 00:05:00,220 对吧 92 00:05:00,220 --> 00:05:02,510 我们有相同的底数 93 00:05:02,510 --> 00:05:06,370 这些指数一定相同 94 00:05:06,370 --> 00:05:18,863 所以我们得知n=l+m 95 00:05:18,863 --> 00:05:21,270 这有什么用呢? 96 00:05:21,270 --> 00:05:23,590 我只是围着指数玩玩 97 00:05:23,590 --> 00:05:25,840 我有什么结论了么? 98 00:05:25,840 --> 00:05:27,590 我想你就要看到了 99 00:05:27,590 --> 00:05:31,140 那,n的另一种写法是什么呢? 100 00:05:31,140 --> 00:05:34,510 我们说,x的n次方等于a乘以b 101 00:05:34,510 --> 00:05:37,350 我事实上跳了一步 102 00:05:37,350 --> 00:05:40,080 返回去,x的n次方 103 00:05:40,080 --> 00:05:40,710 等于a乘以b 104 00:05:40,710 --> 00:05:44,640 这意味着以x为底的a乘以b的对数是n 105 00:05:44,640 --> 00:05:45,170 你知道的 106 00:05:45,170 --> 00:05:45,890 我不知道 107 00:05:45,890 --> 00:05:47,880 我希望你没意识到我不是在倒带 108 00:05:47,880 --> 00:05:52,360 我只是一开始忘了将这个写下来 109 00:05:52,360 --> 00:05:53,250 不过没关系 110 00:05:53,250 --> 00:05:54,070 那,n等于什么 111 00:05:54,070 --> 00:05:55,520 n的另一种写法是什么? 112 00:05:55,520 --> 00:05:58,400 n的另一种写法是这样的 113 00:05:58,400 --> 00:06:01,640 以x为底的a乘以b的对数 114 00:06:01,640 --> 00:06:04,840 那我们现在知道如果我们用n代替这个 115 00:06:04,840 --> 00:06:11,690 得到以x为底的a乘以b的对数 116 00:06:11,690 --> 00:06:13,080 这个等于什么呢? 117 00:06:13,080 --> 00:06:14,500 这等于l 118 00:06:14,500 --> 00:06:18,230 l的另外一种表示方法如下 119 00:06:18,230 --> 00:06:25,570 它等于以x为底a的对数,加上m 120 00:06:25,570 --> 00:06:27,710 那什么是m呢 121 00:06:27,710 --> 00:06:30,792 m在这儿 122 00:06:30,792 --> 00:06:35,970 也就是以x为底,b的对数 123 00:06:35,970 --> 00:06:38,990 这样我们就得到我么第一个对数的性质 124 00:06:38,990 --> 00:06:44,620 以x为底的a乘以b的对数 125 00:06:44,620 --> 00:06:48,130 就等于以x为底的a的对数乘以以x为底的b的对数 126 00:06:48,130 --> 00:06:50,880 希望这证明给你看 127 00:06:50,880 --> 00:06:55,460 还有,如果你想知道这为什么直觉上 128 00:06:55,460 --> 00:07:00,400 会想到对数不过是指数 129 00:07:00,400 --> 00:07:02,250 我会留下这个视频 130 00:07:02,250 --> 00:07:04,470 在下一个视频,我会证明另一个 131 00:07:04,470 --> 00:07:05,900 对数的性质 132 00:07:05,900 --> 00:07:07,670 以后见