WEBVTT 00:00:00.760 --> 00:00:02.395 Burada Rieman cəmimiz var. 00:00:02.395 --> 00:00:04.925 Limiti n sonsuzluğa yaxınlaşırmış kimi götürəcəyik 00:00:04.925 --> 00:00:06.157 və bu videoda 00:00:06.157 --> 00:00:08.137 bu ifadəni müəyyən inteqral şəklində 00:00:08.137 --> 00:00:09.756 yenidən yazmağı sınayacağıq. 00:00:09.756 --> 00:00:11.176 Videonu dayandırıb 00:00:11.176 --> 00:00:14.775 misalı özünüz həll etməyə çalışa bilərsiniz. 00:00:14.775 --> 00:00:16.054 Gəlin 00:00:16.054 --> 00:00:20.428 Rieman cəminin müəyyən inteqralla necə əlaqəli olduğunu xatırlayaq. 00:00:20.428 --> 00:00:24.345 Əgər a-dan b-yə 00:00:27.287 --> 00:00:29.120 f(x) dx-in müəyyən inteqralı varsa, 00:00:34.052 --> 00:00:36.391 başqa videolardan da bildiyimiz kimi, 00:00:36.391 --> 00:00:38.900 o, 00:00:38.900 --> 00:00:43.067 n sonsuzluğa yaxınlaşdıqda 00:00:44.743 --> 00:00:47.076 i bərabərdir 1-dən n-ə cəmin limitinə bərabər olacaq. 00:00:47.918 --> 00:00:49.566 Əslində, 00:00:49.566 --> 00:00:51.720 biz enini 00:00:51.720 --> 00:00:55.093 delta x şəklində yazacağımız düzbucaqlıların 00:00:55.093 --> 00:00:57.260 cəmini tapacağıq. 00:00:58.142 --> 00:01:00.916 Yəni enimiz 00:01:00.916 --> 00:01:02.777 delta x olacaq və 00:01:02.777 --> 00:01:03.736 hündürlüyümüz isə 00:01:03.736 --> 00:01:06.292 delta x-də hesablanan 00:01:06.292 --> 00:01:08.434 funksiyamızın qiyməti olacaq. 00:01:08.434 --> 00:01:10.128 Əgər düzgün Rieman cəmi ediriksə, 00:01:10.128 --> 00:01:12.799 --- 00:01:12.799 --> 00:01:14.412 --- 00:01:14.412 --> 00:01:18.580 Yəni biz aşağı sərhəd olaraq a-dan başlayacağıq 00:01:18.580 --> 00:01:22.747 və indeksimizin müəyyən etdiyi qədər delta x-ləri əlavə edəcəyik. 00:01:23.775 --> 00:01:25.198 Əgər i 1-ə bərabərdirsə, 00:01:25.198 --> 00:01:26.942 biz bir delta x əlavə edəcəyik, 00:01:26.942 --> 00:01:28.962 --- 00:01:28.962 --> 00:01:31.356 Əgər i 2 olsaydı, biz 2 delta x əlavə edəcəkdik. 00:01:31.356 --> 00:01:34.630 Bu, delta x vur 00:01:34.630 --> 00:01:35.963 indeksə bərabər olacaq. 00:01:37.058 --> 00:01:38.623 Bu, daha əvvəl də gördüyümüz 00:01:38.623 --> 00:01:40.649 ümumi formadır. 00:01:40.649 --> 00:01:42.383 Burada nümunələri 00:01:42.383 --> 00:01:44.373 uyğunlaşdıra bilərik. 00:01:44.373 --> 00:01:47.406 Funksiyamız natural loqarifma kimi görünür? 00:01:47.406 --> 00:01:49.129 yəni bizim funksiyamız 00:01:49.129 --> 00:01:51.952 natural loqarifmadır. 00:01:51.952 --> 00:01:53.330 Deməli, biz 00:01:53.330 --> 00:01:56.830 f(x) bərabərdir lnx yaza bilərik. 00:01:58.463 --> 00:02:00.079 Başqa nə görürük? 00:02:00.079 --> 00:02:02.496 Belə görünür ki, a 2-yə bərabərdir. 00:02:03.583 --> 00:02:05.575 a 2-yə bərabərdir. 00:02:05.575 --> 00:02:08.110 Delta x nəyə bərabər olacaq? 00:02:08.110 --> 00:02:10.572 00:02:10.572 --> 00:02:12.368 00:02:12.368 --> 00:02:14.572 00:02:14.572 --> 00:02:17.191 00:02:17.191 --> 00:02:19.582 00:02:19.582 --> 00:02:22.798 00:02:22.798 --> 00:02:26.965 00:02:28.275 --> 00:02:30.816 00:02:30.816 --> 00:02:33.469 00:02:33.469 --> 00:02:36.660 00:02:36.660 --> 00:02:38.109 00:02:38.109 --> 00:02:41.089 00:02:41.089 --> 00:02:43.148 00:02:43.148 --> 00:02:45.077 00:02:45.077 --> 00:02:48.638 00:02:48.638 --> 00:02:52.138 00:02:53.580 --> 00:02:55.199 00:02:55.199 --> 00:02:56.205 00:02:56.205 --> 00:02:58.887 00:02:58.887 --> 00:03:00.553 00:03:00.553 --> 00:03:03.189 00:03:03.189 --> 00:03:05.943 00:03:05.943 --> 00:03:08.481 00:03:08.481 --> 00:03:12.178 00:03:12.178 --> 00:03:15.304 00:03:15.304 --> 00:03:17.614 00:03:17.614 --> 00:03:20.031 00:03:21.891 --> 00:03:23.891 00:03:29.404 --> 00:03:31.102 00:03:31.102 --> 00:03:34.391 00:03:34.391 --> 00:03:35.520 00:03:35.520 --> 00:03:38.437 00:03:39.364 --> 00:03:41.614 00:03:43.137 --> 00:03:44.720 00:03:45.845 --> 00:03:47.012 00:03:50.510 --> 00:03:52.523 00:03:52.523 --> 00:03:55.754 00:03:55.754 --> 00:03:57.861 00:03:57.861 --> 00:03:58.699 00:03:58.699 --> 00:04:02.449 00:04:03.811 --> 00:04:05.551 00:04:05.551 --> 00:04:08.654 00:04:08.654 --> 00:04:09.623 00:04:09.623 --> 00:04:11.205 00:04:11.205 --> 00:04:13.182 00:04:13.182 --> 00:04:14.582 00:04:14.582 --> 00:04:19.356 00:04:19.356 --> 00:04:21.689 00:04:27.386 --> 00:04:30.258 00:04:30.258 --> 00:04:33.211 00:04:33.211 --> 00:04:35.664 00:04:35.664 --> 00:04:37.664 00:04:38.582 --> 00:04:42.932 00:04:42.932 --> 00:04:46.571 00:04:46.571 --> 00:04:48.154 00:04:48.154 --> 00:04:51.505 00:04:51.505 --> 00:04:52.538 00:04:52.538 --> 00:04:55.085 00:04:55.085 --> 00:04:59.054 00:04:59.054 --> 00:05:01.573 00:05:01.573 --> 00:05:02.654 00:05:02.654 --> 00:05:04.273 00:05:04.273 --> 00:05:06.319 00:05:06.319 --> 00:05:11.104 00:05:11.104 --> 00:05:14.172 00:05:14.172 --> 00:05:16.270 00:05:16.270 --> 00:05:19.966 00:05:19.966 --> 00:05:22.298 00:05:22.298 --> 00:05:24.638 00:05:24.638 --> 00:05:26.788 00:05:26.788 --> 00:05:30.121 00:05:32.158 --> 00:05:33.996 00:05:33.996 --> 00:05:35.746 00:05:36.687 --> 00:05:38.564 00:05:38.564 --> 00:05:40.310 00:05:40.310 --> 00:05:43.320 00:05:43.320 --> 00:05:45.218 00:05:45.218 --> 00:05:47.988 00:05:47.988 --> 00:05:49.561 00:05:49.561 --> 00:05:53.311 00:05:55.150 --> 00:05:57.650 00:05:58.484 --> 00:06:00.800 00:06:00.800 --> 00:06:02.725 00:06:02.725 --> 00:06:04.879 00:06:04.879 --> 00:06:06.866 00:06:06.866 --> 00:06:09.038 00:06:09.038 --> 00:06:10.455 00:06:12.201 --> 00:06:13.555 00:06:13.555 --> 00:06:17.305 00:06:18.905 --> 00:06:20.322 00:06:21.498 --> 00:06:23.414 00:06:23.414 --> 00:06:25.384 00:06:25.384 --> 00:06:28.263 00:06:28.263 --> 00:06:30.046 00:06:30.046 --> 00:06:33.129