1 00:00:00,520 --> 00:00:04,050 在这个视频里,我要算出这个 2 00:00:04,050 --> 00:00:07,200 我正在涂上黄色阴影的区域的面积。 3 00:00:07,200 --> 00:00:11,140 具有挑战性的是,在整个区域, 4 00:00:11,140 --> 00:00:12,810 我有同样的下边界的函数, 5 00:00:12,810 --> 00:00:14,540 下面的边界是 6 00:00:14,540 --> 00:00:16,870 y = x 平方/4 - 1, 7 00:00:16,870 --> 00:00:19,242 但是我有不同的上边界, 8 00:00:19,242 --> 00:00:20,700 我们的处理方法就是 9 00:00:20,700 --> 00:00:23,290 是要把这个面积分成两部分, 10 00:00:23,290 --> 00:00:26,640 或者说,把这个区域分成两个区域,左边的区域 11 00:00:26,640 --> 00:00:28,250 和右边的区域, 12 00:00:28,250 --> 00:00:30,730 对于这第一个区域--我涂成 13 00:00:30,730 --> 00:00:34,310 更多黄色--对这第一个区域, 14 00:00:34,310 --> 00:00:35,950 它的整个的 x 的区间, 15 00:00:35,950 --> 00:00:40,360 看起来 x 是在 0 到 1 之间, 16 00:00:40,360 --> 00:00:44,280 y 等于 -- 当 x 等于 1 ,这个函数也等于 1, 17 00:00:44,280 --> 00:00:47,220 当 x 等于 1 ,这个函数也等于 1, 18 00:00:47,220 --> 00:00:48,810 所以,这个点就是 (1,1) 19 00:00:48,810 --> 00:00:50,320 这是他们的交点, 20 00:00:50,320 --> 00:00:53,250 所以,对这一部分,这里的这个分区域, 21 00:00:53,250 --> 00:00:57,420 y = 根下 x 就是整个上面的边界, 22 00:00:57,420 --> 00:00:59,230 这样我们就可以--我们可以 23 00:00:59,230 --> 00:01:02,860 建立不同的--我们能分别处理,计算出 24 00:01:02,860 --> 00:01:04,920 这个区域的的面积。 25 00:01:04,920 --> 00:01:07,960 从 x=1 到 x=2 , 26 00:01:07,960 --> 00:01:10,890 y = 2 - x 是上边界的函数, 27 00:01:10,890 --> 00:01:12,450 我们来做一下。 28 00:01:12,450 --> 00:01:14,710 我们首先来考虑第一个区域, 29 00:01:14,710 --> 00:01:17,050 它就是从 30 00:01:17,050 --> 00:01:19,640 x=0 到 x=1 的定积分 31 00:01:19,640 --> 00:01:25,120 我们的上边界的函数是 根下 x ,x 的平方根, 32 00:01:25,120 --> 00:01:28,390 我们要从它减去我们的下边界函数, 33 00:01:28,390 --> 00:01:32,320 根下 x 减去 x平方/4 减去1, 34 00:01:39,200 --> 00:01:42,400 当然我们有我们的 dx 。 35 00:01:42,400 --> 00:01:46,350 这里,它表示黄色的区域面积。 36 00:01:46,350 --> 00:01:49,730 你可以想象,这一部分, 37 00:01:49,730 --> 00:01:51,660 这两个函数的不同, 38 00:01:51,660 --> 00:01:53,164 就是这个高度, 39 00:01:53,164 --> 00:01:54,580 我用不同的颜色来做, 40 00:01:57,820 --> 00:01:59,680 然后,你把它乘上 dx, 41 00:01:59,680 --> 00:02:03,390 你得到一个宽度为 dx 的小矩形, 42 00:02:03,390 --> 00:02:06,600 你对所有的 x 进行计算, 43 00:02:06,600 --> 00:02:08,860 对不同的 x ,你得到不同的矩形, 44 00:02:08,860 --> 00:02:10,650 然后,你把它们加在一起, 45 00:02:10,650 --> 00:02:14,570 你求当 x 的变化趋于 0 的极限, 46 00:02:14,570 --> 00:02:16,664 你就得到非常非常薄的矩形, 47 00:02:16,664 --> 00:02:18,330 你有无限多的这样的矩形, 48 00:02:18,330 --> 00:02:21,060 这就是我们对定积分的定义, 49 00:02:21,060 --> 00:02:22,820 或者说就是黎曼定义, 50 00:02:22,820 --> 00:02:25,370 这是左边区域的面积, 51 00:02:25,370 --> 00:02:27,370 用完全相同的逻辑, 52 00:02:27,370 --> 00:02:28,972 我们可以算出右边区域的面积, 53 00:02:28,972 --> 00:02:30,680 这个右边的区域,--然后我们 54 00:02:30,680 --> 00:02:32,127 只需把两个面积相加, 55 00:02:32,127 --> 00:02:34,210 右边的区域,我们要从 x = 0 , 56 00:02:34,210 --> 00:02:38,530 到 x --对不起,是 x=1 到 x=2, 57 00:02:38,530 --> 00:02:42,130 上面的函数 是 2 - x, 58 00:02:42,130 --> 00:02:47,220 我们要从它减去下面的函数, 59 00:02:47,220 --> 00:02:49,660 减去 x平方/4 -1, 60 00:02:53,780 --> 00:02:56,060 现在我们只需求它的值。 61 00:02:56,060 --> 00:02:58,800 62 00:02:58,800 --> 00:03:02,100 63 00:03:02,100 --> 00:03:09,220 64 00:03:09,220 --> 00:03:12,020 65 00:03:12,020 --> 00:03:18,710 66 00:03:18,710 --> 00:03:21,330 67 00:03:21,330 --> 00:03:25,330 68 00:03:25,330 --> 00:03:26,650 69 00:03:26,650 --> 00:03:29,330 70 00:03:29,330 --> 00:03:34,747 71 00:03:34,747 --> 00:03:36,705 72 00:03:36,705 --> 00:03:39,310 73 00:03:39,310 --> 00:03:42,130 74 00:03:42,130 --> 00:03:43,480 75 00:03:43,480 --> 00:03:44,730 76 00:03:44,730 --> 00:03:47,500 77 00:03:47,500 --> 00:03:49,200 78 00:03:49,200 --> 00:03:53,650 79 00:03:53,650 --> 00:03:56,410 80 00:03:56,410 --> 00:04:02,160 81 00:04:02,160 --> 00:04:03,660 82 00:04:03,660 --> 00:04:05,510 83 00:04:05,510 --> 00:04:09,590 84 00:04:09,590 --> 00:04:11,640 85 00:04:11,640 --> 00:04:19,670 86 00:04:19,670 --> 00:04:22,029 87 00:04:22,029 --> 00:04:24,450 88 00:04:24,450 --> 00:04:28,460 89 00:04:28,460 --> 00:04:30,610 90 00:04:30,610 --> 00:04:35,690 91 00:04:35,690 --> 00:04:38,410 92 00:04:38,410 --> 00:04:41,010 93 00:04:41,010 --> 00:04:44,260 94 00:04:44,260 --> 00:04:46,740 95 00:04:46,740 --> 00:04:51,070 96 00:04:51,070 --> 00:04:58,330 97 00:04:58,330 --> 00:04:58,920 98 00:05:01,520 --> 00:05:03,650 99 00:05:03,650 --> 00:05:05,460 100 00:05:05,460 --> 00:05:13,270 101 00:05:13,270 --> 00:05:14,604 102 00:05:14,604 --> 00:05:16,270 103 00:05:16,270 --> 00:05:17,889 104 00:05:17,889 --> 00:05:19,180 105 00:05:19,180 --> 00:05:20,930 106 00:05:20,930 --> 00:05:22,300 107 00:05:22,300 --> 00:05:29,430 108 00:05:29,430 --> 00:05:31,310 109 00:05:31,310 --> 00:05:36,440 110 00:05:36,440 --> 00:05:40,190 111 00:05:40,190 --> 00:05:43,280 112 00:05:43,280 --> 00:05:51,100 113 00:05:51,100 --> 00:05:54,460 114 00:05:57,170 --> 00:06:02,410 115 00:06:02,410 --> 00:06:06,030 116 00:06:06,030 --> 00:06:10,730 117 00:06:10,730 --> 00:06:18,410 118 00:06:18,410 --> 00:06:21,614 119 00:06:21,614 --> 00:06:23,030 120 00:06:23,030 --> 00:06:28,830 121 00:06:28,830 --> 00:06:30,040 122 00:06:30,040 --> 00:06:31,955 123 00:06:31,955 --> 00:06:36,010 124 00:06:36,010 --> 00:06:38,290 125 00:06:38,290 --> 00:06:40,990 126 00:06:40,990 --> 00:06:44,960 127 00:06:44,960 --> 00:06:45,630 128 00:06:45,630 --> 00:06:50,560 129 00:06:50,560 --> 00:06:53,255