1 00:00:00,870 --> 00:00:03,080 欢迎观看这一节视频课 这一节讲配平 2 00:00:03,080 --> 00:00:04,440 什么叫配平呢 3 00:00:04,440 --> 00:00:06,740 配平是解二次方程的一张方法 4 00:00:06,740 --> 00:00:07,970 所以在解一个二次方程前... 5 00:00:07,970 --> 00:00:09,700 我先把这个二次方程写下来 6 00:00:09,700 --> 00:00:11,570 然后我将说明如何配平 7 00:00:11,570 --> 00:00:13,460 然后再看其它例子 8 00:00:13,460 --> 00:00:16,650 以及为什么这叫作配平 9 00:00:16,650 --> 00:00:32,600 方程是x2+16x-57=0 10 00:00:32,600 --> 00:00:36,130 根据已学的知识 11 00:00:36,130 --> 00:00:38,570 我们可以使用因式分解 12 00:00:38,570 --> 00:00:41,770 看哪两个数加起来等于16 13 00:00:41,770 --> 00:00:44,060 且乘起来是-57 14 00:00:44,060 --> 00:00:45,450 稍微想想 15 00:00:45,450 --> 00:00:47,360 我们得到的并不一定是整数 16 00:00:49,540 --> 00:00:51,850 这一例虽然是整数 17 00:00:51,850 --> 00:00:54,190 但情况并非总是如此 18 00:00:54,190 --> 00:00:58,150 所以 因式分解只能用到 19 00:00:58,150 --> 00:01:01,000 确定能得到整数表达式的情况 20 00:01:01,000 --> 00:01:03,620 (x+整数)(x+整数)这种形式 21 00:01:03,620 --> 00:01:06,990 (x+整数)(x+整数)这种形式 22 00:01:06,990 --> 00:01:09,240 另一个方法是二次公式 23 00:01:09,240 --> 00:01:11,420 我们最终会看到 24 00:01:11,420 --> 00:01:15,510 二次公式其实是配方的快捷方式 25 00:01:15,510 --> 00:01:19,420 它其实是通过配方得到的 26 00:01:19,420 --> 00:01:23,340 那么配方是什么 怎么做呢 27 00:01:23,340 --> 00:01:27,080 首先看看 如何展开平方式 28 00:01:27,080 --> 00:01:30,930 首先看看 如何展开平方式 29 00:01:30,930 --> 00:01:33,220 做在下面这里 30 00:01:33,220 --> 00:01:40,250 (x+a)2是多少 31 00:01:40,250 --> 00:01:51,680 它等于x2+2ax+a2 32 00:01:51,680 --> 00:01:54,310 任何这种形式的 33 00:01:54,310 --> 00:01:57,740 都可以写成(x+某数)2 34 00:01:57,740 --> 00:02:01,040 如果能把这个方程 35 00:02:01,040 --> 00:02:05,900 写成(x+a)2=某数的形式 36 00:02:05,900 --> 00:02:08,140 就能直接开方求解 37 00:02:08,140 --> 00:02:11,580 配方所要做的也正是这些 我举例说明下 38 00:02:11,580 --> 00:02:15,010 配方所要做的也正是这些 我举例说明下 39 00:02:15,010 --> 00:02:16,510 例子更容易理解 40 00:02:16,510 --> 00:02:19,310 这个框起来 是需要记住的 41 00:02:19,310 --> 00:02:22,130 配方其实也就是这个 42 00:02:22,130 --> 00:02:25,650 让方程一侧得到这种形式 43 00:02:25,650 --> 00:02:27,940 另一侧只剩一个数 44 00:02:27,940 --> 00:02:32,000 然后两侧同时取平方根 45 00:02:32,000 --> 00:02:32,570 首先 46 00:02:32,570 --> 00:02:35,020 确认这不是一个完全平方式 47 00:02:35,020 --> 00:02:39,700 若是 将x项系数看作是2a 48 00:02:39,700 --> 00:02:44,440 a就是8 a2应该是64 49 00:02:44,440 --> 00:02:50,840 常数项显然不是64 不是完全平方式 50 00:02:50,840 --> 00:02:52,040 然后 我们可以 51 00:02:52,040 --> 00:02:57,200 在两侧同时加上57 以去掉57 52 00:02:57,200 --> 00:03:07,550 有x2+16x=57 53 00:03:07,550 --> 00:03:11,470 这是在两侧同时加上57 54 00:03:11,470 --> 00:03:16,300 然后 左侧需要加上什么 55 00:03:16,300 --> 00:03:24,820 才能得到(x+a)2这样的式子呢 56 00:03:24,820 --> 00:03:28,790 按照下面的规律 有x2 57 00:03:28,790 --> 00:03:37,880 +2ax 这个看成2ax 58 00:03:37,880 --> 00:03:40,900 这是2ax 59 00:03:40,900 --> 00:03:44,040 然后需要加上a2 60 00:03:44,040 --> 00:03:48,010 加a2 这个形式就有了 61 00:03:48,010 --> 00:03:50,510 但方程一侧进行运算 另一侧 62 00:03:50,510 --> 00:03:52,080 需要进行相同运算 63 00:03:52,080 --> 00:03:56,840 左侧加a2 右侧也要加a2 64 00:03:56,840 --> 00:04:02,260 这就是完全平方式的形式了 65 00:04:02,260 --> 00:04:04,210 但还需要知道a 66 00:04:04,210 --> 00:04:06,740 a是多少呢 67 00:04:06,740 --> 00:04:10,720 如果这个是2ax 68 00:04:10,720 --> 00:04:15,380 2a显然是16 所以a为8 69 00:04:15,380 --> 00:04:18,630 这只用观察法就能得出 70 00:04:18,630 --> 00:04:20,930 写出来的话 71 00:04:20,930 --> 00:04:25,690 也就是2ax=16x 72 00:04:25,690 --> 00:04:31,430 然后两侧同时除以2x a=16x/2x 73 00:04:31,430 --> 00:04:38,130 假设x不为0 则a=8 74 00:04:38,130 --> 00:04:42,430 a=8 表达式可以写成 75 00:04:42,430 --> 00:04:50,470 随便换种颜色 x2+16x+64 76 00:04:50,470 --> 00:04:54,180 a是8 a2也就是64 77 00:04:54,180 --> 00:05:00,720 等于57+64 78 00:05:00,720 --> 00:05:04,600 我的说明有些冗长 79 00:05:04,600 --> 00:05:08,890 其实这里到这里 也就是两侧同时加57 80 00:05:08,890 --> 00:05:10,870 57移到右侧 81 00:05:10,870 --> 00:05:14,320 然后同时加64 82 00:05:14,320 --> 00:05:16,830 加64是为了 83 00:05:16,830 --> 00:05:21,070 让左侧得到这个完全平方形式 84 00:05:21,070 --> 00:05:23,200 得到完全平方形式后 85 00:05:23,200 --> 00:05:26,030 重写出来是 86 00:05:26,030 --> 00:05:28,620 (x+a)2 这个形式 87 00:05:28,620 --> 00:05:35,550 而a是8 所以是(x+8)2 88 00:05:35,550 --> 00:05:43,090 等于57+64 也就是121 89 00:05:43,090 --> 00:05:47,270 这就非常好做了 90 00:05:47,270 --> 00:05:48,960 仍然是二次方程 91 00:05:48,960 --> 00:05:50,350 仍然是二次方程 92 00:05:50,350 --> 00:05:53,060 却不需要公式法或因式分解了 93 00:05:54,610 --> 00:05:57,390 可以直接两侧同时开方 94 00:05:57,390 --> 00:06:00,550 同时开方得到什么 95 00:06:00,550 --> 00:06:03,610 再随便换个颜色 96 00:06:03,610 --> 00:06:09,230 开方得到x+8=±根号121 正负号别忘了 97 00:06:12,880 --> 00:06:15,960 根号121等于多少 11 98 00:06:15,960 --> 00:06:20,620 到这里来 不管这个 这个只是草稿 99 00:06:20,620 --> 00:06:26,830 于是有x+8=±11 100 00:06:26,830 --> 00:06:33,860 两侧同时-8 有x=-8±11 101 00:06:33,860 --> 00:06:41,590 x可以是-8+11 也就是3 102 00:06:41,590 --> 00:06:48,160 确保我没做错 103 00:06:48,160 --> 00:06:53,310 x=-8±11 104 00:06:53,310 --> 00:06:59,270 对的 x可以是3 105 00:06:59,270 --> 00:07:10,410 或者-8-11 x也可以是-19 106 00:07:10,410 --> 00:07:13,200 看看说不说得通 107 00:07:13,200 --> 00:07:18,680 理论上 这个可以分解为 108 00:07:18,680 --> 00:07:24,030 (x-3)(x+19)=0 109 00:07:24,030 --> 00:07:26,160 因为这两个是方程的解 110 00:07:26,160 --> 00:07:28,190 这很正确 111 00:07:28,190 --> 00:07:31,340 -3×19=-57 112 00:07:31,340 --> 00:07:36,920 而x项系数-3+19=16 113 00:07:36,920 --> 00:07:39,120 这个题其实可以直接用分解的 114 00:07:39,120 --> 00:07:41,030 不过这并不明显 115 00:07:41,030 --> 00:07:46,800 因为19是个很奇怪的数 还不如用配方 116 00:07:46,800 --> 00:07:47,690 为什么叫配方呢 117 00:07:47,690 --> 00:07:49,920 因为需要得到这种形式 加64 118 00:07:49,920 --> 00:07:52,950 来配完整这个式子 119 00:07:52,950 --> 00:07:56,020 让左侧得到完全平方式 120 00:07:56,020 --> 00:07:56,770 再看个例子 121 00:07:56,770 --> 00:07:59,920 我将减少说明 快速完成 122 00:07:59,920 --> 00:08:02,100 这样可能看起来会更简单 123 00:08:04,800 --> 00:08:07,080 不过这个问题更麻烦一些 124 00:08:07,080 --> 00:08:19,930 6x2-7x-3=0 125 00:08:19,930 --> 00:08:22,980 当然 还是可以用因式分解 但我不喜欢 126 00:08:22,980 --> 00:08:25,260 x2项有系数时使用因式分解 127 00:08:25,260 --> 00:08:27,590 两侧同时除以6我也不喜欢 128 00:08:28,970 --> 00:08:30,960 这样到处都是分数 129 00:08:30,960 --> 00:08:33,580 通过观察法分解不好使 130 00:08:33,580 --> 00:08:35,190 可以用二次公式 131 00:08:35,190 --> 00:08:37,710 之后的视频中我会讲到 132 00:08:37,710 --> 00:08:40,630 其实我已经算是讲到了 133 00:08:40,630 --> 00:08:43,170 二次公式本质就是配方 134 00:08:43,170 --> 00:08:46,280 它只是一种快捷方式 将配方公式化 135 00:08:46,280 --> 00:08:47,520 还是配方吧 136 00:08:47,520 --> 00:08:50,640 这才是这一节的主题 137 00:08:50,640 --> 00:08:54,650 首先 两侧同时加上3 138 00:08:56,300 --> 00:09:06,770 得到6x2-7x=3 139 00:09:06,770 --> 00:09:09,470 有些老师喜欢不管这个-3 140 00:09:09,470 --> 00:09:11,050 直接配方 141 00:09:11,050 --> 00:09:13,170 我觉得先把3挪开 142 00:09:13,170 --> 00:09:16,080 算起来更清楚 143 00:09:16,080 --> 00:09:19,550 这个6我也不喜欢 它会把事情搞复杂 144 00:09:19,550 --> 00:09:25,990 我希望得到(x+a)2的形式 不希望x前 145 00:09:25,990 --> 00:09:27,450 还有系数 146 00:09:27,450 --> 00:09:31,530 所以 两侧同时除以6 147 00:09:31,530 --> 00:09:41,560 得到x2-7/6x=3/6=1/2 148 00:09:41,560 --> 00:09:43,190 这可以一步就位 149 00:09:43,190 --> 00:09:46,450 直接把6一起除过去 150 00:09:46,450 --> 00:09:49,250 下面开始配方 151 00:09:49,250 --> 00:09:51,800 x2-7/6x+某数等于1/2 留点空间 152 00:09:59,530 --> 00:10:02,400 左侧需要加上某数 153 00:10:02,400 --> 00:10:05,290 得到完全平方式 154 00:10:05,290 --> 00:10:06,620 怎么做呢 155 00:10:06,620 --> 00:10:10,770 观察系数 156 00:10:10,770 --> 00:10:14,610 这里不是7/6 而是-7/6 157 00:10:14,610 --> 00:10:18,610 取它的1/2 然后平方 158 00:10:18,610 --> 00:10:19,690 算算 159 00:10:19,690 --> 00:10:28,820 (x+a)2=x2+2ax+a2 160 00:10:28,820 --> 00:10:30,750 这是需要记住的 161 00:10:30,750 --> 00:10:33,560 也是所有配方的基础 162 00:10:33,560 --> 00:10:34,980 我刚说 163 00:10:34,980 --> 00:10:39,190 这一项是x项系数1/2的平方 164 00:10:39,190 --> 00:10:40,190 为什么 165 00:10:40,190 --> 00:10:44,080 因为将两个式子的样式进行匹配 166 00:10:44,080 --> 00:10:48,760 我们知道 a就是1/2的x项系数 167 00:10:48,760 --> 00:10:54,050 -7/6的1/2是-7/12 168 00:10:54,050 --> 00:10:58,770 写出来的话 这里a=-7/12 169 00:10:58,770 --> 00:11:01,980 也就是x项系数乘以1/2 170 00:11:01,980 --> 00:11:06,030 两侧需要加多少 才能完成配方 171 00:11:06,030 --> 00:11:13,440 需要加(-7/12)2 也就是49/144 172 00:11:13,440 --> 00:11:16,630 两侧同时加上49/144 173 00:11:22,240 --> 00:11:26,120 左侧如何化简呢 174 00:11:26,120 --> 00:11:28,470 我们知道这是完全平方式 175 00:11:28,470 --> 00:11:31,550 我们知道a是-7/12 176 00:11:31,550 --> 00:11:35,200 所以方程左侧是 177 00:11:35,200 --> 00:11:43,390 (x+a)2 而a是负数 178 00:11:47,980 --> 00:11:50,350 将其乘开必然得到这个 179 00:11:53,130 --> 00:11:58,360 右边需要通分 公分母是144 180 00:11:58,360 --> 00:12:06,300 72+49=121 所以是121/144 181 00:12:06,300 --> 00:12:13,180 所以(x-7/12)2=121/144 182 00:12:13,180 --> 00:12:14,300 然后 183 00:12:14,300 --> 00:12:17,700 两侧同时开平方 184 00:12:17,700 --> 00:12:22,210 找点空位置 换绿色 185 00:12:22,210 --> 00:12:25,320 把这里框出来 186 00:12:25,320 --> 00:12:33,940 我们有x-7/12=±根号(121/144) 187 00:12:33,940 --> 00:12:38,390 也就是±11/12 188 00:12:38,390 --> 00:12:42,420 根号121是11 根号144是12 189 00:12:42,420 --> 00:12:44,480 然后两侧同时加上7/12 190 00:12:44,480 --> 00:12:53,100 有x=7/12±11/12 191 00:12:53,100 --> 00:12:58,660 也就是(7±11)/12 192 00:12:58,660 --> 00:13:03,930 有两种可能 7+11=18 18/12 193 00:13:03,930 --> 00:13:08,210 x=18/12 即3/2 194 00:13:08,210 --> 00:13:12,760 或7-11 有-4/12 195 00:13:12,760 --> 00:13:17,940 即x=-1/3 搞定 这就是配方 196 00:13:17,940 --> 00:13:20,220 但愿大家能够理解 197 00:13:20,220 --> 00:13:23,340 证明二次公式就需要配方 198 00:13:23,340 --> 00:13:26,240 只是要配方的不再是具体数例 199 00:13:26,240 --> 00:13:29,820 而是抽象方程Ax2+Bx+C=0 200 00:13:29,820 --> 00:13:35,060 对Ax2+Bx+C=0进行配方 201 00:13:35,060 --> 00:13:38,110 最后得到二次公式 202 00:13:38,110 --> 00:13:39,510 之前视频我好像讲过 203 00:13:39,510 --> 00:13:41,600 如果我没讲过 之后会讲 204 00:13:41,600 --> 00:13:44,540 好了 下次再会 205 00:00:17,070 --> 00:00:25,070 网易公开课官方微博 http://t.163.com/163open 206 00:00:30,070 --> 00:00:45,070 oCourse字幕组翻译:只做公开课的字幕组 http://ocourse.org