- Something you see a lot
when doing thermodynamics
especially problems
involving the first law
are what are called PV Diagrams.
Now, the P stands for Pressure
and the V stands for Volume.
And this gives you a diagram of what
the pressure and volume
are in any given instant.
So what does this mean?
Well, imagine you had a container
full of a gas and there's
a movable piston on top.
Piston can move up or down, changing
the amount of volume, right?
This is the volume we're talking about,
is the volume within here.
So that movable piston can
change that amount of volume.
And that would change the
amount of pressure inside,
depending on what heat is
added, how much work is done.
So say we started with a
certain amount of volume, right?
Let's say we start with that much volume.
And the pressure inside
is probably not zero.
If there's any gas
inside, it can't be zero.
And so we come over to here,
let's say we start at
this point right here.
Now, what do we do?
I know if I push the piston
down, my volume decreases.
And if I pull the piston
up, my volume increases.
So if I push the piston down,
I know volume goes down.
That means on this graph,
I'm going that way.
Piston going down means decreasing volume.
What about piston going up?
Well, if the piston goes up,
then my volume's increasing
and I know on my graph I'd
better be going to the right.
Now maybe I'm going up and right.
Maybe I'm going down and right.
All I know is, my volume
better be increasing,
so this is increasing volume,
that's increasing volume,
that's increasing volume.
This is not increasing volume,
so I know if my piston goes up,
my volume increases, I gotta be going
to the rightward in
some way on this graph.
And if my piston goes down, I better
be going to the left
on this graph somehow.
Now, what happens to the pressure?
You gotta know a little
more detail about it.
But just knowing the
direction of the piston,
that lets you know which
way you go on this graph.
So say I push the piston down.
Say I push it down really fast.
What do you think's gonna
happen to the pressure?
The pressure's probably gonna go up.
How would I represent that?
Well, volume's gotta go down,
pressure would have to go up,
so I might take a path that
looks something like this.
Volume's gotta go down to the left.
Pressure's gotta go up, so maybe
it does something like that.
There's really infinitely many ways
the gas could get from
one state to another.
It could take any possible range
and unless you know the exact details,
it's hard to say exactly
what's gonna happen.
So there's infinitely many
possibilities on this diagram.
You can loop around,
it's not like a function.
You can do something like this.
This gas can take some crazy
path through this PV Diagram.
There's infinitely many ways it can take.
But there are four thermodynamic processes
that are most commonly
represented on a PV Diagram.
Again, these are not the
only four possibilities.
These are just the four that are kind of
the simplest to deal with mathematically.
And they're often a good representation
and accurate approximation
to a lot of processes
so the math's good, they work pretty well,
we talk about them a lot.
The first one is called
in isobaric process.
Iso means constant, so
whenever you see iso
before something, it means constant.
Whatever follows next,
and this one's isobaric.
Baric, well bars, that's
a unit of pressure,
so baric is talking about pressure.
Isobaric means constant pressure.
So how do you represent
this on a PV DIagram?
Well, if you wanna
maintain constant pressure,
you can't go up or down, because if I were
to go up, my pressure would be increasing.
If I were to go down, my
pressure would be decreasing.
The only option available is
to go along a horizontal line.
So this would be in iso, well, sometimes
they're called isobars,
and isobar for short.
This is an isobar, this
is an isobaric expansion
if I go to the right, cause
I know volume's increasing.
And if I go to the left it would be
an isobaric compression because
volume would be decreasing.
But it doesn't have to be
in this particular spot.
It could be anywhere on this PV Diagram,
any horizontal line is gonna be an isobar,
an isobaric process.
Now, I bring up the isobaric process first
because it allows me to
show something important
that's true of every process
that's just easier to see
for the isobaric process.
In physics, the area under the curve
often represents something significant.
And that's gonna be true here as well.
Let's try to figure out
what the area under this
curve represents.
So first of all, to find the area
of this rectangle, we know it's gonna be
the height times the
width, what's the height?
The height's just the pressure, right?
The value of this pressure over here
is gonna be the height and the width
is the change in volume so if I started
with V initial and I ended with V final,
let's say it was the expansion
instead of the compression.
This V final minus V initial, this delta V
is going to represent the
width of this rectangle.
So we know area is going to
be the value of the pressure
times the change in the volume.
Well, what does that mean?
We know that pressure, we know
the definition of pressure,
pressure is just the force per area.
So on this gas, even on a
force exerted on it per area,
and the change in volume,
what do we know is the volume?
How could I represent the volume in here?
I know this piston has some area,
so there's some area that this piston has.
And then there's a certain height.
This inner cylinder of volume in here
has a certain height
and then a certain area
so we know the volume is
just height times area.
So it would be height times
the area of the piston.
Which of these is
changing in this process?
Well, the area is not changing.
If the area of this piston changed,
it either let some of the gas out
or it would bust through
the sides of the cylinder,
both of which we're
assuming is not happening.
So I can pull area out of this delta sign
since the area is constant.
And what I get is F times A over A times
the change in the height.
Well the A is canceled, A cancels A
and I get F times the
change in the height.
But look at, this is just
force times a distance.
Times the distance by
which this height changes.
So delta H will be the amount by which
this piston goes up or down.
And we know force times the distance
by which you apply that
force is just the work.
So now we know the area
under this isobaric process
represents the work done either on the gas
or by the gas depending
on which way you're going.
So this area is the work, this
area, the value of this area
equals the amount of work
done on the gas or by the gas.
How do you figure out which?
Well, technically this area represents
the work done by the gas, because if we're
talking about a positive area,
mathematically that means
moving to the right,
like on a graph in math class.
The area, positive area,
you're moving to the right.
So if we want to be
particular and precise,
we'll say that this is a
process moving to the right.
And we know if the volume is going up
like this graph is going to the right,
which means volume is increasing,
we know that gas is doing work.
So technically, this area
is the work done by the gas.
You can see that as well
since this is P delta V.
If your delta V comes out positive,
pressure is always
positive, if your Delta V
comes out positive, the
volume is increasing.
That means work is being done by the gas.
So you have to be careful.
If you calculate this P delta V
and you go to your first law equation,
which remember, says delta U is Q plus W,
well you can't just plug
in the value of P delta V.
This is the work done by the gas,
so you have to plug in negative that value
for the work done, and
also correspondingly,
if you were to go to the left,
if you did have a process
that went to the left.
That is to say the volume was decreasing.
If you find this area and you're careful,
then you'll get a negative delta V
if you're going leftward
because you'll end
with a smaller value for the
volume than you started with.
So if you really treat
the left one as the final,
cause that's where you end
up if you're going left,
and the rightward one as the initial,
your leftward final point will be smaller
than your initial point, you
will get a negative value here.
So again, you plug in negative
of that negative value.
You'll get your positive work,
cause positive work is
being done on the gas.
That sounds very complicated.
Here's what I do, quite honestly.
I just look at the shape, I find the area,
I do the magnitude of the height, right,
the size of it, no negatives.
The size of the width, no negatives.
I multiply the two and then I just look.
Am I going to the left?
If I'm going to the left,
I know my work is positive.
If I'm going to the right,
I know my work is negative
that I plug into here, so I
just add the negative sign in.
Makes it me easier for me to understand.
So I said that this works for
any process, how is that so?
If I take some random process,
I'm not gonna get a nice
rectangle, how is this true?
Well, if I did take a random process
from one point to another, say I took
this crazy path here.
Even though it's not a perfect rectangle,
I can break it up into small rectangles
so I can take this, break
this portion up into,
if I make the rectangle small enough,
I can approximate any
area as the summation
of a whole bunch of little rectangles.
And look at, each one of these rectangles,
well, P delta V, that's the
area underneath for that one,
add them all up, I get
the total area undeneath.
So even though it might be
difficult to find this area,
it's always true that if
I could find this area
under any process, this area
does represent the work done.
And again, it's by the gas.
So in other words, using the formula
work done by the gas
that we had previously
equals P times delta V, that works
for one small little rectangle
and you can add all those up,
but it work for the entire process.
If you tried to use the,
say, initial pressure
times the total change in volume,
and that's not gonna
give you an exact answer,
that's assuming you
have one big rectangle.
So this formula won't work
for the whole process.
But we do know if you
have an isobaric process,
if it really is an isobaric process,
then we can rewrite the first law.
The first law says that delta U equals Q
plus work done on the gas?
Well, we know a formula for
the work done by the gas.
Work done by the gas is P delta V.
So the work done on the gas is just
negative P times delta V.
Here's a formula for the first law
if you happen to have an isobaric process.
So an isobaric process is pretty nice.
It gives you an exact
way to find the work done
since the area underneath
is a perfect rectangle.
But how would you physically set up
an isobaric process in the lab?
Well, imagine this, let's say you heat up
this cylinder, you allow heat to flow in.
That would tend to increase the pressure.
So the only way we could
maintain constant pressure,
cause an isobaric process
maintains constant pressure,
if I want the pressure to stay
the same as heat flows in,
I better let this piston move upwards.
While I add heat I can
maintain constant pressure.
In fact, you might think
that's complicated.
How are you going to do that exactly?
It's not so bad, just allow the piston
to come into equilibrium with whatever
atmospheric pressure plus
the weight of this piston is.
So there's a certain pressure
down from the outside
and then there's the weight of the piston
divided by the area
gives another pressure.
This heat will try to make
the pressure increase,
but if you just allow this system
to come into equilibrium
with the outside pressure,
the inside pressure is always gonna equal
the outside pressure
because if it's not equal,
this piston will move
up or down accordingly.
So if this piston can move freely,
it'll maintain a constant pressure
and that would be a way
to physically ensure
that the pressure remains constant
and you have an isobaric process.
I'll explain the next three
thermodynamic processes
in the next video.