< Return to Video

Webinar: Understanding international differences in maths

  • 0:07 - 0:09
    Γεια σας και καλωσήρθατε σε αυτό το OECD σεμινάριο
  • 0:09 - 0:12
    με εμένα τον Duncan Crawford
  • 0:12 - 0:14
    Σας ευχαριστώ πολύ που συμμετέχετε
  • 0:14 - 0:16
    Σήμερα συζητώντας θα συζητήσουμε αν οι μαθητές σε μερικές
  • 0:16 - 0:19
    χώρες απολαμβάνουν τα μαθηματικά περισσότερο από άλλες.
  • 0:19 - 0:21
    υφίσταται μια λεγόμενη κουλτούρα των μαθηματικών
  • 0:21 - 0:24
    έχει σημαντική επίδραση στην επιτυχία των μαθητών
  • 0:24 - 0:27
    Τα δεδομένα του OECD δείχνουν ότι
  • 0:27 - 0:29
    καμία χώρα δεν έχει ιδιαίτερη αγάπη για τα μαθηματικά
  • 0:29 - 0:32
    αλλά είναι οι πολιτές της οι οποίες είναι σημαντικές
  • 0:32 - 0:35
    και υπάρχουν δράσεις που κάνουν οι χώρες
  • 0:35 - 0:37
    ώστε να ενδιαφέρονται οι μαθητές για το θέμα.
  • 0:37 - 0:38
    Θα έχουμε
  • 0:38 - 0:41
    μία συζήτηση πάνω σε αυτό το θέμα σε πολύ λίγο
  • 0:41 - 0:42
    Αλλά μιλώντας για ενδιαφέρον
  • 0:42 - 0:44
    Αν σας ενδιαφέρει αυτό το θέμα και θέλετε να
  • 0:44 - 0:46
    μάθετε περισσότερα από από αυτά που θα
  • 0:46 - 0:48
    συζητήσουμε σε αυτό το σεμινάριο
  • 0:48 - 0:51
    Μόλις κυκλοφόρησε μια ολοκαίνουργια έκθεση του ΟΟΣΑ με τίτλο
  • 0:51 - 0:53
    Μαθηματικά για τη ζωή και την εργασία, που περιγράφει
  • 0:53 - 0:55
    τους διάφορους τρόπους με τους οποίους τα μαθηματικά
  • 0:55 - 0:57
    παρέχονται στη δευτεροβάθμια εκπαίδευση
  • 0:57 - 1:00
    εκπαίδευση· είναι κυριολεκτικά ολοκαίνουργιο
  • 1:00 - 1:02
    μόλις κυκλοφόρησε σήμερα, οπότε θα μπορέσετε να
  • 1:02 - 1:05
    το δείτε τώρα — όμως ας δούμε μερικά
  • 1:05 - 1:08
    λεπτομέρειες από τον πολιτικό αναλυτή του ΟΟΣΑ,
  • 1:08 - 1:10
    Εδουάρδο Μαγάλ από τις μεταβάσεις στη δευτεροβάθμια
  • 1:10 - 1:12
    εκπαίδευση, από την ομάδα της δευτεροβάθμιας
  • 1:12 - 1:14
    εκπαίδευσης και δεξιοτήτων, σωστά
  • 1:14 - 1:15
    εδώ στον ΟΟΣΑ,
  • 1:15 - 1:19
    ο λόγος σε εσάς Εδουάρδο,
  • 1:19 - 1:22
    γεια σου Λαν, ευχαριστώ πάρα πολύ
  • 1:22 - 1:25
    για την ευγενική εισαγωγή — είναι χαρά μου
  • 1:25 - 1:27
    είναι πραγματικά χαρά μου που είμαι εδώ
  • 1:27 - 1:29
    όπως είπε και ο Ντενάν πριν ξεκινήσουμε
  • 1:29 - 1:31
    με τη συζήτησή μας, θα προσπαθήσω
  • 1:31 - 1:33
    να σας κάνω μια — θα προσπαθήσω να είναι σύντομη
  • 1:33 - 1:35
    μια σύντομη παρουσίαση και
  • 1:35 - 1:39
    θα μοιραστώ τώρα την οθόνη μου μαζί σας
  • 1:39 - 1:43
    (αναμονή)
  • 1:43 - 1:45
    μπορείς να μου επιβεβαιώσεις Ντάνκαν ότι
  • 1:45 - 1:48
    βλέπεις την παρουσίαση; ναι, τη βλέπουμε, εντάξει
  • 1:48 - 1:50
    όλα καλά, ας ξεκινήσουμε λοιπόν τη
  • 1:50 - 1:53
    σύντομη παρουσίαση για αυτό το σεμινάριο
  • 1:53 - 1:54
    κατανοώντας τις διεθνείς διαφορές
  • 1:54 - 1:58
    στα μαθηματικά, οπότε απλώς λίγα πράγματα
  • 1:58 - 2:00
    ένα σύντομο πλαίσιο πριν από αυτές τις αναφορές
  • 2:00 - 2:01
    που ανέφερε ο Ντάνκαν, οι οποίες αρχικά
  • 2:01 - 2:04
    ανατέθηκαν από το Υπουργείο Παιδείας
  • 2:04 - 2:05
    στο Ηνωμένο Βασίλειο
  • 2:05 - 2:08
    το 2023 υπό την πρώην συντηρητική κυβέρνηση
  • 2:08 - 2:11
    του Ρίσι Σούνακ, ως μέρος μιας
  • 2:11 - 2:13
    πολιτική που στόχευε στην αύξηση της
  • 2:13 - 2:16
    συμμετοχής στα μαθηματικά μέχρι την ηλικία των 18 χρονών
  • 2:16 - 2:18
    — αποτέλεσμα, ο πρώην πρωθυπουργός
  • 2:18 - 2:20
    ανησυχούσε για τη
  • 2:20 - 2:22
    σχετικά χαμηλή συμμετοχή στα μαθηματικά στο
  • 2:22 - 2:25
    Ηνωμένο Βασίλειο σε σύγκριση με άλλες ανεπτυγμένες χώρες,
  • 2:25 - 2:27
    και ανέφερε ότι η Αγγλία
  • 2:27 - 2:31
    αντιμετώπιζε μια συγκεκριμένη αρνητική στάση προς τα μαθηματικά
  • 2:31 - 2:31
    -
  • 2:31 - 2:34
    που έπρεπε να καταπολεμηθεί κάνοντάς τα
  • 2:34 - 2:38
    υποχρεωτικά μέχρι την ηλικία των 18, οπότε
  • 2:38 - 2:41
    στην έκθεσή μας που ανέφερα προηγουμένως
  • 2:41 - 2:44
    εξετάζουμε τον τομέα των μαθηματικών
  • 2:44 - 2:47
    στη δευτεροβάθμια εκπαίδευση στην Αγγλία και σε έξι
  • 2:47 - 2:50
    άλλα συγκρίσιμα εκπαιδευτικά συστήματα — αυτά είναι απλώς
  • 2:50 - 2:54
    πληροφοριακά: Αυστρία, Βρετανική Κολομβία στον Καναδά
  • 2:54 - 2:55
    Δανία, Ιρλανδία,
  • 2:55 - 2:58
    Νέα Ζηλανδία και επίσης Σιγκαπούρη, οπότε
  • 2:58 - 3:01
    είναι σημαντικό να πούμε, φυσικά, πως
  • 3:01 - 3:04
    από τότε άλλαξε η κυβέρνηση στο Ηνωμένο Βασίλειο
  • 3:04 - 3:06
    και αυτή η πολιτική για την υποχρεωτική διδασκαλία των μαθηματικών
  • 3:06 - 3:08
    μέχρι τα 18 δεν ισχύει πλέον
  • 3:08 - 3:10
    όμως, παρ’ όλα αυτά,
  • 3:10 - 3:12
    η ανάλυση που περιέχει αυτή η έκθεση έχει πολύ
  • 3:12 - 3:15
    ενδιαφέρουσες παρατηρήσεις, που εγώ πιστεύω — και πιστεύουμε
  • 3:15 - 3:17
    — ότι είναι πολύ χρήσιμες όχι μόνο
  • 3:17 - 3:18
    για την Αγγλία αλλά και για πολλά εκπαιδευτικά συστήματα
  • 3:18 - 3:20
    σε όλο τον ΟΟΣΑ και τον κόσμο, οπότε
  • 3:20 - 3:23
    ας ξεκινήσουμε με αυτές τις μεγάλες έννοιες
  • 3:23 - 3:24
    που σχετίζονται με την πολιτισμική αντίληψη των μαθηματικών
  • 3:24 - 3:27
    υπάρχουν πολλές απεικονίσεις και
  • 3:27 - 3:30
    συνδηλώσεις των μαθηματικών στη δημοφιλή κουλτούρα,
  • 3:30 - 3:33
    που μπορούν να προσφέρουν
  • 3:33 - 3:35
    κάποιες ιδέες για το πώς οι άνθρωποι βλέπουν και
  • 3:35 - 3:37
    μιλούν για τα μαθηματικά και πώς τα παιδιά
  • 3:37 - 3:40
    και τα νέα παιδιά στην πραγματικότητα το ακούν
  • 3:40 - 3:42
    και διαμορφώνουν τις δικές τους αντιλήψεις, οπότε
  • 3:42 - 3:44
    το πρώτο παράδειγμα είναι από μια έκθεση στην Αγγλία,
  • 3:44 - 3:45
    που μιλάει για τις αντιλήψεις γύρω από
  • 3:45 - 3:47
    τα μαθηματικά, συγκεκριμένα για τους γονείς και
  • 3:47 - 3:50
    είναι μια φράση από γονιό προς παιδί
  • 3:50 - 3:53
    η οποία αναφερόταν ως μια συνηθισμένη στάση
  • 3:53 - 3:55
    και αυτό — πιστεύω ότι αυτό, με ακρίβεια,
  • 3:55 - 3:56
    εκφράζει αυτό που είπε ο πρώην πρωθυπουργός
  • 3:56 - 3:57
    ο Ρίσι Σούνακ όταν μίλησε
  • 3:57 - 4:00
    για μια «αντι-μαθηματική» νοοτροπία — ένα άλλο παράδειγμα
  • 4:00 - 4:02
    και αυτό το βρήκα ιδιαίτερα αστείο
  • 4:02 - 4:05
    αλλά και με τον δραματικό τόνο ενός
  • 4:05 - 4:06
    από έναν 16χρονο
  • 4:06 - 4:10
    άρθρου από το King's College London σχετικά με
  • 4:10 - 4:13
    τους λόγους που, κατά δήλωσή τους, οι 16χρονοι
  • 4:13 - 4:16
    δίνουν για να μην συνεχίσουν να σπουδάζουν μαθηματικά
  • 4:16 - 4:19
    ένα ακόμη παράδειγμα έρχεται από τις ΗΠΑ
  • 4:19 - 4:22
    το 1992, νομίζω, σχετικά με την κούκλα Barbie
  • 4:22 - 4:28
    η οποία έλεγε τη φράση «τα μαθηματικά είναι δύσκολα»
  • 4:28 - 4:30
    και εννοείται πως
  • 4:30 - 4:31
    σήμερα θεωρούμε αυτή τη φράση ιδιαίτερα προβληματική
  • 4:31 - 4:33
    προφανώς και λόγω
  • 4:33 - 4:36
    των έμφυλων στερεοτύπων που αναπαράγει, αλλά
  • 4:36 - 4:38
    πιστεύω ότι λέει πολλά για το τι
  • 4:38 - 4:39
    θεωρούνταν φυσιολογικό — τουλάχιστον εκείνη την εποχή
  • 4:39 - 4:41
    σε ό,τι αφορά τις αντιλήψεις για την
  • 4:41 - 4:45
    πειθαρχία, και το τελευταίο παράδειγμα είναι ένα πιο
  • 4:45 - 4:47
    αντίθετο παράδειγμα από την Ιαπωνία, το
  • 4:47 - 4:49
    2002, όπου υπήρξε
  • 4:49 - 4:52
    μια παρεξήγηση στο πλαίσιο
  • 4:52 - 4:55
    ορισμένων μεταρρυθμίσεων πολιτικής — το Π
  • 4:55 - 4:57
    διδασκόταν στο σχολείο ως τρία — αυτό
  • 4:57 - 4:59
    προκάλεσε τεράστια αναστάτωση στην ιαπωνική κοινωνία,
  • 4:59 - 5:00
    κάτι που είναι επίσης ένα ενδιαφέρον
  • 5:00 - 5:03
    αντίθετο παράδειγμα σε σχέση με
  • 5:03 - 5:05
    τα προηγούμενα που είδαμε, οπότε υπάρχουν
  • 5:05 - 5:06
    τρία βασικά μηνύματα που θέλω να τονίσω
  • 5:06 - 5:08
    από εδώ και πέρα, πριν μπούμε στην
  • 5:08 - 5:10
    ανάλυση την ίδια — πρώτα απ’ όλα, είναι σαν
  • 5:10 - 5:12
    πολιτισμικές αντιλήψεις για οτιδήποτε, αλλά στα
  • 5:12 - 5:14
    μαθηματικά ειδικότερα, είναι εξαιρετικά δύσκολο
  • 5:14 - 5:16
    να τις προσδιορίσεις — δεύτερο σημείο: προφανώς
  • 5:16 - 5:18
    ο καθένας έχει τη δική του άποψη για τα μαθηματικά,
  • 5:18 - 5:21
    και αυτές επηρεάζονται από
  • 5:21 - 5:23
    πολλούς και διαφορετικούς παράγοντες, αλλά
  • 5:23 - 5:25
    οι απεικονίσεις που δημιουργούμε γύρω από
  • 5:25 - 5:27
    τα μαθηματικά — και τώρα μιλάμε σε επίπεδο κοινωνίας
  • 5:27 - 5:30
    — είναι εξαιρετικά επιδραστικές
  • 5:30 - 5:31
    στο πώς οι νέοι άνθρωποι στην πραγματικότητα
  • 5:31 - 5:33
    αντιλαμβάνονται και αντιμετωπίζουν την επιστήμη των μαθηματικών
  • 5:33 - 5:35
    στο μέλλον τους — λοιπόν, προχωράμε στην
  • 5:35 - 5:38
    έκθεση «Μαθηματικά για τη Ζωή και την Εργασία»
  • 5:38 - 5:40
    η οποία κυκλοφόρησε σήμερα το πρωί
  • 5:40 - 5:43
    και σας προτείνω όλους να ρίξετε μια ματιά
  • 5:43 - 5:46
    εξετάσαμε μερικά πράγματα — είδαμε
  • 5:46 - 5:47
    τα μαθησιακά αποτελέσματα στα μαθηματικά μέσα σε
  • 5:47 - 5:50
    δευτεροβάθμια συστήματα — τις απαιτήσεις για
  • 5:50 - 5:52
    τα μαθηματικά σε όλα τα εκπαιδευτικά συστήματα —
  • 5:52 - 5:55
    πώς αυτά τα διαφορετικά συστήματα ανταποκρίνονται
  • 5:55 - 5:58
    στις διαφορετικές ανάγκες των μαθητών και των ικανοτήτων τους,
  • 5:58 - 6:00
    μέσω διαφορετικών προγραμμάτων
  • 6:00 - 6:02
    παρέχοντας διαφορετικά επίπεδα επιλογών
  • 6:02 - 6:03
    επίσης, συζητήσαμε τις πολιτισμικές
  • 6:03 - 6:06
    αντιλήψεις και στάσεις απέναντι στην
  • 6:06 - 6:07
    επιστήμη των μαθηματικών — και τέλος, την επιρροή
  • 6:07 - 6:11
    που έχουν οι μαθητές, οι γονείς και η αγορά εργασίας
  • 6:11 - 6:12
    με βάση τις οπτικές τους για τα μαθηματικά — ένα
  • 6:12 - 6:14
    σημαντικό συμπέρασμα από αυτή την έκθεση είναι
  • 6:14 - 6:17
    ότι πρέπει να εξετάζουμε φυσικά τις πολιτικές
  • 6:17 - 6:19
    και πώς αυτές διαμορφώνουν τον τρόπο με τον οποίο
  • 6:19 - 6:20
    οι μαθητές αλληλεπιδρούν με το γνωστικό αντικείμενο και ότι
  • 6:20 - 6:23
    πολλά από όσα φαίνονται στην αρχή
  • 6:23 - 6:25
    ως πολιτισμικές αντιλήψεις, στην πραγματικότητα είναι
  • 6:25 - 6:29
    όπως ανέφερε και ο Ντάναν στην εισαγωγή, σχετικές με
  • 6:29 - 6:31
    δημόσιες πολιτικές — λοιπόν, προχωρώντας σε αυτό
  • 6:31 - 6:34
    το κομμάτι των δεδομένων — στην πραγματικότητα, το σημαντικό
  • 6:34 - 6:35
    εύρημα είναι ότι δεν υπάρχει κάποια συγκεκριμένη χώρα
  • 6:35 - 6:38
    ή ελάχιστες συγκεκριμένες χώρες
  • 6:38 - 6:40
    που να έχουν αυτό που αποκαλούμε «κουλτούρα των»
  • 6:40 - 6:42
    μαθηματικών — εδώ έχουμε κάποια δεδομένα, κοιτάμε
  • 6:42 - 6:44
    την απόλαυση των μαθηματικών από 15χρονους, από την
  • 6:44 - 6:47
    έρευνα PISA και από το δημοτικό σχολείο, από
  • 6:47 - 6:49
    την έρευνα TIMSS — καθώς και έναν δείκτη
  • 6:49 - 6:51
    αυτοαποτελεσματικότητας και συμμετοχής
  • 6:51 - 6:53
    για να δώσουμε ένα πλαίσιο, τι είναι αυτός ο δείκτης;
  • 6:53 - 6:55
    είναι ένας δείκτης που δημιουργήθηκε
  • 6:55 - 6:56
    στο πλαίσιο του PISA και
  • 6:56 - 6:59
    βασικά, πρόκειται για την αυτοαντίληψη του μαθητή
  • 6:59 - 7:01
    σχετικά με την ικανότητά του να
  • 7:01 - 7:03
    επιλύει προβλήματα — προβλήματα καθαρών ή εφαρμοσμένων
  • 7:03 - 7:05
    μαθηματικών — θα δώσω ένα παράδειγμα, ώστε
  • 7:05 - 7:08
    ο κόσμος να κατανοήσει καλύτερα, για παράδειγμα,
  • 7:08 - 7:10
    σε σχέση με την άλγεβρα, αν οι μαθητές κοιτάξουν
  • 7:10 - 7:12
    ένα πρόγραμμα δρομολογίων τρένων, μπορούν
  • 7:12 - 7:15
    να καταλάβουν, για παράδειγμα, τι ώρα
  • 7:15 - 7:17
    θα φτάσει το τρένο σε συγκεκριμένους σταθμούς;
  • 7:17 - 7:19
    αυτό που βλέπουμε εδώ είναι ότι όταν κοιτάμε
  • 7:19 - 7:22
    την Αγγλία, στην πραγματικότητα είναι πάνω από τον μέσο όρο του ΟΟΣΑ
  • 7:22 - 7:25
    και των περισσότερων συγκρίσιμων χωρών
  • 7:25 - 7:28
    ως προς την απόλαυση και την αυτο–
  • 7:28 - 7:30
    ο δείκτης, αλλά η συμμετοχή παραμένει
  • 7:30 - 7:32
    αρκετά χαμηλή — και αυτό το σημείο, λοιπόν, είναι ένα
  • 7:32 - 7:35
    σημαντικό ερώτημα για εμάς, να
  • 7:35 - 7:37
    κατανοήσουμε — αλλά αυτό δεν αφορά μόνο
  • 7:37 - 7:38
    την αυτοαντίληψη
  • 7:38 - 7:41
    η αυτοαντίληψη σχετικά με τις στάσεις είναι επίσης
  • 7:41 - 7:44
    ορατή στα αποτελέσματα, όταν βλέπετε τα δεδομένα από
  • 7:44 - 7:46
    τους μέσους όρους των μαθηματικών
  • 7:46 - 7:48
    στην PISA 2022 — βλέπουμε ότι η Αγγλία είναι
  • 7:48 - 7:51
    στα δεξιά — με μωβ χρώμα, παρεμπιπτόντως
  • 7:51 - 7:53
    το μωβ φυσικά είναι η Αγγλία και οι συγκρίσιμες
  • 7:53 - 7:57
    χώρες που ανέφερα νωρίτερα — βλέπουμε ότι
  • 7:57 - 7:59
    τα πάνε αρκετά καλά, οπότε είναι
  • 7:59 - 8:00
    ενδιαφέρον να δούμε ότι στην πραγματικότητα
  • 8:00 - 8:02
    -
  • 8:02 - 8:04
    όχι μόνο έχουν θετικές στάσεις,
  • 8:04 - 8:08
    αλλά τα πάνε και καλά, και παρ’ όλα αυτά
  • 8:08 - 8:11
    υπάρχει ένα αρκετά — αρκετά χαμηλό ποσοστό συμμετοχής
  • 8:11 - 8:14
    ποσοστό συμμετοχής — ένα
  • 8:14 - 8:17
    ένα επιπλέον στοιχείο εδώ είναι το διάγραμμα
  • 8:17 - 8:20
    που εξετάζει τα μαθηματικά και τις αριθμητικές
  • 8:20 - 8:23
    δεξιότητες μεταξύ 15χρονων και
  • 8:23 - 8:27
    24χρονων στο Πακιστάν, για να δώσουμε
  • 8:27 - 8:29
    ένα πλαίσιο — βασικά, αυτό είναι ένα
  • 8:29 - 8:31
    μια άσκηση που έγινε σε μια έκθεση του ΟΟΣΑ
  • 8:31 - 8:35
    που εναρμόνισε τα δεδομένα μιας ομάδας
  • 8:35 - 8:36
    η οποία συμμετείχε στην PISA το 2003 — και μετά πώς
  • 8:36 - 8:38
    οι δεξιότητες αυτές αξιολογήθηκαν αργότερα, όταν
  • 8:38 - 8:40
    στο Πακιστάν, το 2012
  • 8:40 - 8:42
    — και φυσικά αυτό είναι μια
  • 8:42 - 8:44
    εναρμόνιση δεδομένων, αλλά δεν είναι
  • 8:44 - 8:46
    μια μακροχρόνια μελέτη — όμως παραμένει
  • 8:46 - 8:48
    χρήσιμη και έχει σημαντικά συμπεράσματα — και το βασικό
  • 8:48 - 8:50
    μήνυμα εδώ είναι ότι η επίδοση στην ηλικία των 15
  • 8:50 - 8:53
    αν και είναι σημαντική, δεν είναι το τέλος
  • 8:53 - 8:55
    της πορείας — και ό,τι συμβαίνει μετά τα 15
  • 8:55 - 8:57
    στην ανώτερη δευτεροβάθμια εκπαίδευση και στην
  • 8:57 - 8:59
    οι πρώιμες επαφές με την αγορά εργασίας είναι
  • 8:59 - 9:02
    εξαιρετικά σημαντικές για την ανάπτυξη
  • 9:02 - 9:05
    νοητικών δεξιοτήτων όπως ο αλφαβητισμός στους μαθητές
  • 9:05 - 9:09
    — και βλέπουμε εδώ ότι
  • 9:09 - 9:10
    στον ΟΟΣΑ, αυτή η ομάδα κέρδισε 31 μονάδες
  • 9:10 - 9:13
    κατά μέσο όρο σε αυτή την περίοδο, κάτι που είναι
  • 9:13 - 9:16
    πολύ σημαντικό εύρημα — και παρεμπιπτόντως
  • 9:16 - 9:18
    τα νέα δεδομένα της PISA από το Πακιστάν
  • 9:18 - 9:20
    αν και αυτά εδώ είναι παλιά, θα κυκλοφορήσουν
  • 9:20 - 9:21
    τον επόμενο μήνα, τον Δεκέμβριο — οπότε να είστε σε επιφυλακή
  • 9:21 - 9:25
    -
  • 9:25 - 9:28
    οπότε, αν η κουλτούρα δεν μας λέει
  • 9:28 - 9:30
    την απάντηση, τότε κοιτάμε
  • 9:30 - 9:32
    τις πολιτικές, και προσπαθούμε να εξηγήσουμε
  • 9:32 - 9:35
    ίσως γιατί η Αγγλία έχει τόσο χαμηλή
  • 9:35 - 9:39
    συμμετοχή — και φυσικά εδώ
  • 9:39 - 9:40
    μιλάμε για τις επιλογές και τα επίπεδα
  • 9:40 - 9:42
    και για μια ποικιλία επιλογών στα μαθηματικά
  • 9:42 - 9:44
    στην ανώτερη δευτεροβάθμια εκπαίδευση, κάτι που είναι
  • 9:44 - 9:45
    πολύ σημαντικό ώστε να καλύπτονται οι μαθητές με
  • 9:45 - 9:48
    διαφορετικές φιλοδοξίες και διαφορετική δυναμική
  • 9:48 - 9:50
    — και βλέπουμε ότι αυτές είναι
  • 9:50 - 9:54
    πολύ συχνές στρατηγικές, όπως στη British Colombia
  • 9:54 - 9:56
    Δανία, Ιρλανδία και λοιπά — το δεύτερο
  • 9:56 - 9:59
    σημείο ή δεύτερος παράγοντας είναι η
  • 9:59 - 10:01
    επαγγελματική εκπαίδευση — είτε ως
  • 10:01 - 10:04
    ξεχωριστό αντικείμενο είτε ενσωματωμένο
  • 10:04 - 10:07
    σε άλλα μαθήματα — είναι μια κρίσιμη
  • 10:07 - 10:09
    στρατηγική για πολλά εκπαιδευτικά συστήματα ώστε να διασφαλίσουν
  • 10:09 - 10:10
    ότι όλοι οι μαθητές αποκτούν
  • 10:10 - 10:13
    τις μαθηματικές δεξιότητες που χρειάζονται — και
  • 10:13 - 10:16
    η Αυστρία και η Δανία είναι πολύ
  • 10:16 - 10:17
    επιτυχημένα παραδείγματα αυτής της προσέγγισης — το τρίτο
  • 10:17 - 10:20
    σημείο είναι, προφανώς, να γίνονται υποχρεωτικά,
  • 10:20 - 10:23
    κάτι που δεν ισχύει
  • 10:23 - 10:25
    στο Ηνωμένο Βασίλειο μετά τα 16 — αλλά ισχύει, για παράδειγμα,
  • 10:25 - 10:27
    στην Αυστρία ως βασικό μάθημα του
  • 10:27 - 10:30
    προγράμματος σπουδών — αλλά είναι σημαντικό
  • 10:30 - 10:32
    να πούμε ότι, παρόλο που το να τα κάνεις υποχρεωτικά
  • 10:32 - 10:34
    θα μπορούσε να βοηθήσει, δεν είναι απαραίτητα
  • 10:34 - 10:36
    η λύση — και βλέπουμε
  • 10:36 - 10:38
    συστήματα που, παρόλο που δεν τα έχουν υποχρεωτικά,
  • 10:38 - 10:39
    έχουν σχεδόν καθολική
  • 10:39 - 10:41
    συμμετοχή — όπως συμβαίνει
  • 10:41 - 10:43
    στην Ιρλανδία, στη Σιγκαπούρη, κάτι που μας οδηγεί
  • 10:43 - 10:45
    στο επόμενο σημείο σχετικά με την ανώτατη εκπαίδευση
  • 10:45 - 10:47
    και τις απαιτήσεις εισαγωγής που μπορούν να λειτουργήσουν
  • 10:47 - 10:49
    ως επίπεδο σύγκρισης — για παράδειγμα, εσύ
  • 10:49 - 10:53
    μπορεί να μην είναι υποχρεωτικό, αλλά αν
  • 10:53 - 10:55
    όλα τα πανεπιστήμια και η ανώτατη εκπαίδευση
  • 10:55 - 10:57
    απαιτούν να το έχεις,
  • 10:57 - 10:59
    στην πράξη οι άνθρωποι θα πρέπει να το παρακολουθήσουν
  • 10:59 - 11:01
    και αυτό μπορεί να είναι ένας σημαντικός παράγοντας
  • 11:01 - 11:03
    — και τώρα προχωρώντας προς το τέλος
  • 11:03 - 11:05
    της παρουσίασης, ήθελα να επιστρέψω
  • 11:05 - 11:07
    στο πρώτο μου σημείο, αυτό της διαφορετικότητας, που
  • 11:07 - 11:09
    είναι πραγματικά σημαντικό — όπως μπορείτε να δείτε
  • 11:09 - 11:11
    εδώ, όλα τα συστήματα παρέχουν σχεδόν
  • 11:11 - 11:14
    διαφορετικά μαθηματικά επίπεδα
  • 11:14 - 11:17
    και επιλογές — και βλέπουμε
  • 11:17 - 11:19
    στον άξονα Χ — πρόσβαση, δηλαδή, στον αριθμό των
  • 11:19 - 11:22
    επιλογών που προσφέρουν τα συστήματα της δευτεροβάθμιας
  • 11:22 - 11:25
    και στον άξονα Υ, ο αριθμός των επιπέδων
  • 11:25 - 11:27
    και εδώ βλέπουμε ότι η Αγγλία, για παράδειγμα,
  • 11:27 - 11:29
    τονίζεται για το ότι έχει
  • 11:29 - 11:32
    ιδιαίτερα χαμηλή ποικιλομορφία — ναι, προσφέρουν
  • 11:32 - 11:35
    τα Μαθηματικά Πυρήνα (Core Mathematics)
  • 11:35 - 11:37
    ως εναλλακτική στα A Levels, αλλά
  • 11:37 - 11:39
    προφανώς υπάρχουν κάποια προβλήματα — και
  • 11:39 - 11:40
    η συμμετοχή ήταν πολύ χαμηλή — ένα από τα
  • 11:40 - 11:42
    ζητήματα που αναφέρθηκαν στην έκθεση, και
  • 11:42 - 11:44
    ένα από τα εμπόδια ήταν στην πραγματικότητα
  • 11:44 - 11:46
    κάτι που αναφέραμε νωρίτερα, ότι
  • 11:46 - 11:50
    τα εκπαιδευτικά ιδρύματα δεν εκτιμούσαν
  • 11:50 - 11:52
    αυτό το γνωστικό πεδίο — αλλά βασικά,
  • 11:52 - 11:54
    ποιες είναι οι συνέπειες αυτού; Αυτό είναι
  • 11:54 - 11:57
    που θέλουμε να συζητήσουμε — και ένα από τα θέματα
  • 11:57 - 11:58
    της έλλειψης ποικιλομορφίας είναι ο κίνδυνος ότι
  • 11:58 - 12:00
    τα προγράμματα της ανώτερης δευτεροβάθμιας εκπαίδευσης
  • 12:00 - 12:03
    δεν θα καλύπτουν τις ανάγκες όλων των
  • 12:03 - 12:06
    μαθητών — κάτι που με φέρνει στο τελευταίο μου σημείο,
  • 12:06 - 12:09
    το οποίο αφορά, βασικά, τα επίπεδα
  • 12:09 - 12:11
    στα μαθηματικά — απλώς για λίγο πλαίσιο,
  • 12:11 - 12:14
    στην Αγγλία, η υποχρεωτική εκπαίδευση
  • 12:14 - 12:17
    χωρίζεται σε στάδια από τα 14 έως τα 16
  • 12:17 - 12:19
    και μετά έχουμε αυτό που αποκαλούν GCSE
  • 12:19 - 12:22
    δίνουν αυτές τις εξετάσεις
  • 12:22 - 12:26
    και μετά τα 16 μπορούν να επιλέξουν τρία
  • 12:26 - 12:28
    τρία A-levels για να συνεχίσουν μέχρι τα 18
  • 12:28 - 12:31
    τα μαθηματικά δεν είναι υποχρεωτικά μετά τα 16
  • 12:31 - 12:33
    αυτή η μετάβαση στην ηλικία των 16 ετών και εδώ
  • 12:33 - 12:36
    εξηγούμε απλά αυτό το γράφημα
  • 12:36 - 12:39
    στον άξονα x βλέπουμε ποιοι είναι οι βαθμοί
  • 12:39 - 12:42
    δίνουν αυτή την εξέταση στα 16
  • 12:42 - 12:45
    το GCSE, όπου το 9 είναι ο υψηλότερος βαθμός
  • 12:45 - 12:48
    και στον αριστερό άξονα
  • 12:48 - 12:51
    στον άξονα y βλέπουμε τα ποσοστά μετάβασης
  • 12:51 - 12:52
    από το στάδιο του GCSE στο επίπεδο A Levels
  • 12:52 - 12:55
    σύμφωνα με τις διάφορες
  • 12:55 - 12:57
    ειδικότητες για τις οποίες μιλάμε, και αν
  • 12:57 - 12:59
    κοιτάξετε αυτό το γράφημα, μπορείτε να δείτε ότι
  • 12:59 - 13:02
    τα μαθηματικά που εμφανίζονται εδώ σε αυτή την ομάδα
  • 13:02 - 13:04
    με αυτό το γαλαζοπράσινο χρώμα, βλέπουμε ότι
  • 13:04 - 13:07
    η γραμμή είναι πολύ επίπεδη στα χαμηλότερα
  • 13:07 - 13:09
    επίπεδα και μετά γίνεται εξαιρετικά απότομη
  • 13:09 - 13:11
    που σημαίνει ότι μόνο οι
  • 13:11 - 13:13
    υψηλής απόδοσης μαθητές στα μαθηματικά
  • 13:13 - 13:17
    είναι αυτοί που τελικά εγγράφονται στα A levels
  • 13:17 - 13:19
    στα μαθηματικά, για να σας δώσουμε
  • 13:19 - 13:22
    λίγες πληροφορίες για το τι σημαίνει ένας βαθμός
  • 13:22 - 13:24
    από επτά έως εννιά είναι ισοδύναμος με
  • 13:24 - 13:27
    ένα Α ή Α* στην Αγγλία, που σημαίνει
  • 13:27 - 13:29
    ότι αυτό είναι ουσιαστικά το αποτέλεσμα
  • 13:29 - 13:32
    μόνο παιδιά με πολύ πολύ υψηλές επιδόσεις
  • 13:32 - 13:35
    το κάνουν αυτό, αν δεν έχουν επιλογή
  • 13:35 - 13:37
    δεν θα το επιλέξουν, οπότε
  • 13:37 - 13:39
    υπάρχει έλλειψη επιλογών κυρίως για
  • 13:39 - 13:41
    μαθητές υψηλών επιδόσεων, όχι κορυφαίων
  • 13:41 - 13:43
    μαθητές που θα μπορούσαν να κάνουν μαθηματικά
  • 13:43 - 13:44
    αλλά δεν έχουν τη δυνατότητα
  • 13:44 - 13:46
    που να τους ταιριάζει, απλώς ως συμπληρωματική επιλογή
  • 13:46 - 13:48
    αυτό φαίνεται επίσης στη κατανομή των βαθμών
  • 13:48 - 13:50
    όταν βλέπουμε την Αγγλία, βλέπουμε
  • 13:50 - 13:52
    ότι όταν βλέπουμε τα A Levels
  • 13:52 - 13:55
    βαθμολογίες από διαφορετικά γνωστικά αντικείμενα
  • 13:55 - 13:57
    στα μαθηματικά είναι μόνο η κατανομή
  • 13:57 - 14:00
    που δείχνει ότι οι περισσότεροι έχουν υψηλές
  • 14:00 - 14:02
    βαθμολογίες, κάτι που αντικατοπτρίζει προφανώς
  • 14:02 - 14:04
    τη μεροληψία επιλογής όσων εισέρχονται
  • 14:04 - 14:07
    σε αυτόν τον κλάδο, και αυτό έρχεται σε αντίθεση με
  • 14:07 - 14:09
    άλλα συστήματα που έχουν περισσότερες επιλογές
  • 14:09 - 14:12
    περισσότερα επίπεδα, και όπου η κατανομή
  • 14:12 - 14:14
    είναι πιο επίπεδη και πιο ισομερής, κάτι που
  • 14:14 - 14:17
    είναι η περίπτωση της Ιρλανδίας, αν η Linda θέλει
  • 14:17 - 14:19
    να επανέλθει σε αυτό το σημείο αργότερα
  • 14:19 - 14:21
    με αυτό ολοκληρώνω και ζητώ συγγνώμη για
  • 14:21 - 14:24
    την μικρή υπέρβαση χρόνου
  • 14:24 - 14:25
    ευχαριστούμε πολύ Έντουαρντο για τον χρόνο
  • 14:25 - 14:28
    ήταν πραγματικά πολύ ενδιαφέρον και
  • 14:28 - 14:31
    επίσης ενδιαφέρον να δούμε τη μείωση
  • 14:31 - 14:33
    των μαθητών που αγαπούν τα μαθηματικά όταν είναι στο δημοτικό,
  • 14:33 - 14:36
    αλλά πόσο μειώνεται μέχρι
  • 14:36 - 14:39
    την ηλικία των 15 ετών – υπάρχει
  • 14:39 - 14:42
    μια ερώτηση από την Kyi Mamoto που ρωτάει
  • 14:42 - 14:45
    για τον πρώην πρωθυπουργό Ρίσι Σούνακ
  • 14:45 - 14:47
    και τη δέσμευσή του να μάθουν όλα τα παιδιά
  • 14:47 - 14:48
    μαθηματικά μέχρι την ηλικία των 18 – ρωτάει αν αυτό ισχύει για το Ηνωμένο Βασίλειο
  • 14:48 - 14:51
    ή μόνο για την Αγγλία, και τελικά είναι μόνο
  • 14:51 - 14:53
    για την Αγγλία, επειδή η εκπαίδευση είναι
  • 14:53 - 14:55
    αποκεντρωμένη στο Ηνωμένο Βασίλειο, και φυσικά τώρα
  • 14:55 - 14:56
    η συντηρητική κυβέρνηση του Σούνακ δεν είναι
  • 14:56 - 14:59
    πια εκεί – έχασαν τις εκλογές, οπότε
  • 14:59 - 15:00
    Kώρα υπάρχει μια κυβέρνηση των Εργατικών στο Ηνωμένο Βασίλειο
  • 15:00 - 15:01
    --
  • 15:01 - 15:03
    ευχαριστούμε για αυτή την ερώτηση και παρακαλώ
  • 15:03 - 15:06
    σε όλους τους υπόλοιπους, γράψτε τις ερωτήσεις σας
  • 15:06 - 15:08
    και θα προσπαθήσουμε να απαντήσουμε
  • 15:08 - 15:10
    όσες περισσότερες μπορούμε, αν και νομίζω
  • 15:10 - 15:13
    ότι είναι μάλλον καλή στιγμή να παρουσιάσουμε
  • 15:13 - 15:16
    την ομάδα μας χωρίς άλλη καθυστέρηση, οπότε
  • 15:16 - 15:18
    ο Μιλάνγκ θα μας συνοδεύσει, είναι ανώτερος σύμβουλος
  • 15:18 - 15:20
    στον Εθνικό Οργανισμό Εκπαίδευσης
  • 15:20 - 15:23
    και την ποιότητα στα παιδιά και την
  • 15:23 - 15:25
    Υπουργείο Παιδείας της Δανίας, και η Linda Ramsbottom
  • 15:25 - 15:28
    συμμετέχει επίσης – είναι ανώτερο στέλεχος
  • 15:28 - 15:30
    επιθεωρήτρια πρωτοβάθμιας εκπαίδευσης από
  • 15:30 - 15:33
    ο Υπουργείο Παιδείας της Ιρλανδίας – σας ευχαριστούμε και τις δύο
  • 15:33 - 15:37
    πολύ που είστε μαζί μας, θα ήθελα να ξεκινήσω
  • 15:37 - 15:39
    μιλώντας για ηλικίες και τα Μαθηματικά
  • 15:39 - 15:41
    επειδή τα μαθηματικά και η αριθμητική είναι
  • 15:41 - 15:45
    ξεκάθαρα ένα σημαντικό κομμάτι της εκπαίδευσης
  • 15:45 - 15:47
    αλλά μέχρι ποια ηλικία πρέπει τα παιδιά να τα μαθαίνουν
  • 15:47 - 15:49
    τα μαθηματικά – προφανώς, ο πρώην Βρετανός
  • 15:49 - 15:53
    πρωθυπουργός είπε την ηλικία των 18 ετών
  • 15:53 - 15:56
    Yola Milang, εσύ τι πιστεύεις;
  • 15:56 - 16:00
    Νομίζω πως η σύντομη και «πολιτική» απάντηση
  • 16:00 - 16:03
    θα ήταν: «ε εξαρτάται», και
  • 16:03 - 16:05
    δηλαδή, προφανώς τα μαθηματικά είναι
  • 16:05 - 16:08
    σημαντικά για τους περισσότερους, σωστά; είναι
  • 16:08 - 16:09
    εξαιρετικά σημαντικά για πολλά επαγγέλματα
  • 16:09 - 16:13
    είναι απαραίτητα για την περαιτέρω
  • 16:13 - 16:16
    εκπαίδευση, αλλά είναι επίσης κάτι που είναι
  • 16:16 - 16:18
    χρήσιμο στην καθημερινή ζωή – όλοι χρειαζόμαστε
  • 16:18 - 16:20
    να μπορούμε να κάνουμε τον προϋπολογισμό μας
  • 16:20 - 16:21
    να καταλαβαίνουμε γιατί είναι κακή ιδέα
  • 16:21 - 16:23
    να δανειζόμαστε με πολύ υψηλό επιτόκιο.
  • 16:23 - 16:26
    Οπότε, προφανώς, δεν θα έπρεπε κανείς
  • 16:26 - 16:28
    the exact right age would be I think is
  • 16:28 - 16:31
    a difficult question I think empirically
  • 16:31 - 16:32
    looking at Denmark we can see that we've
  • 16:32 - 16:35
    had a change over the past decades from
  • 16:35 - 16:38
    a system where the mathematics education
  • 16:38 - 16:41
    that we would do in our academic upper
  • 16:41 - 16:44
    secondary track would be geared H
  • 16:44 - 16:46
    towards mathematics as
  • 16:46 - 16:49
    um as a science disciplined to watch
  • 16:49 - 16:51
    more of a view that well really mathemat
  • 16:51 - 16:53
    and then those that chose not to do and
  • 16:53 - 16:55
    then you know that level could be really
  • 16:55 - 16:57
    high because it was a smaller group but
  • 16:57 - 17:00
    then with the with the for like 20 years
  • 17:00 - 17:02
    ago 15 20 years ago there was definitely
  • 17:02 - 17:05
    changes in how we we did our academic
  • 17:05 - 17:07
    track in Upper upper secondary so that
  • 17:07 - 17:09
    much more students like a greater number
  • 17:09 - 17:11
    of students now probably study
  • 17:11 - 17:15
    mathematics but then perhaps for some at
  • 17:15 - 17:18
    least at a lower level because the types
  • 17:18 - 17:19
    of student that used to not study
  • 17:19 - 17:22
    mathematics now study it but and that
  • 17:22 - 17:24
    reflects also I think a change in
  • 17:24 - 17:26
    mathematics is important for everyone so
  • 17:26 - 17:28
    one shouldn't end mathematics education
  • 17:28 - 17:30
    too early but it's definitely impossible
  • 17:30 - 17:34
    to say whether 16 17 18 19 14 would be
  • 17:34 - 17:35
    the right
  • 17:35 - 17:38
    age just a quick followup for you if you
  • 17:38 - 17:40
    don't mind so you said now there's more
  • 17:40 - 17:42
    children who are studying it to a later
  • 17:42 - 17:45
    age do you get push back from certain
  • 17:45 - 17:46
    young people you say you know why should
  • 17:46 - 17:48
    I be studying mathematics I'm not
  • 17:48 - 17:50
    interested in it I know you're telling
  • 17:50 - 17:51
    me it's important but it's not something
  • 17:51 - 17:53
    which I think I want to pursue in the
  • 17:53 - 17:55
    future or is necessary for whatever
  • 17:55 - 17:59
    career I want to do so luckily I don't
  • 17:59 - 18:02
    think the young people are aware of what
  • 18:02 - 18:05
    how they're impacted by reforms done 15
  • 18:05 - 18:06
    years ago so we don't definitely don't
  • 18:06 - 18:08
    get the push
  • 18:08 - 18:09
    back
  • 18:09 - 18:11
    in that
  • 18:11 - 18:15
    way um but uh what we definitely do get
  • 18:15 - 18:18
    is that you know the more varied student
  • 18:18 - 18:21
    population you have in a in a in a given
  • 18:21 - 18:23
    math problem the harder it is to teach
  • 18:23 - 18:25
    right it would it's easier to sit down
  • 18:25 - 18:27
    with five PhD students in mathematics
  • 18:27 - 18:28
    and discuss something that it is to
  • 18:28 - 18:31
    introduce a class of 25 people with with
  • 18:31 - 18:35
    different entry levels in mathematics so
  • 18:35 - 18:38
    uh you know there it is definitely the
  • 18:38 - 18:39
    case
  • 18:39 - 18:42
    that people's prior experience with
  • 18:42 - 18:44
    mathematics and how and motivation for
  • 18:44 - 18:45
    being in class would would definitely
  • 18:45 - 18:47
    have an impact that's something we hear
  • 18:47 - 18:50
    from from from teachers for sure okay I
  • 18:50 - 18:52
    see thanks so much for that Linda R
  • 18:52 - 18:54
    bottom from Ireland's Department of
  • 18:54 - 18:57
    Education let me bring you into the
  • 18:57 - 18:58
    conversation what is the situation in
  • 18:58 - 19:01
    Ireland actually do all students study
  • 19:01 - 19:04
    maths up until the age of 18 good
  • 19:04 - 19:06
    morning everybody um thank you yes in
  • 19:06 - 19:08
    Ireland we have compulsory mathematics
  • 19:08 - 19:11
    up to the age of 16 so that's lower
  • 19:11 - 19:14
    secondary um education in Ireland and
  • 19:14 - 19:15
    then after that we have a couple of
  • 19:15 - 19:17
    different ways students can access
  • 19:17 - 19:19
    mathematics well it's not compulsory it
  • 19:19 - 19:22
    is technically compulsory because the
  • 19:22 - 19:24
    majority of students will take um
  • 19:24 - 19:27
    mathematics to gain entry into further
  • 19:27 - 19:29
    education so into third level or they
  • 19:29 - 19:31
    may also want their mathematics to enter
  • 19:31 - 19:34
    the workforce or a trade so after our
  • 19:34 - 19:36
    Junior cycle which we call the first
  • 19:36 - 19:38
    three years we then have a track which
  • 19:38 - 19:40
    we call the leaving start applied about
  • 19:40 - 19:43
    3,000 students out of um a small
  • 19:43 - 19:45
    proportion of our students take that
  • 19:45 - 19:47
    that option which would be an
  • 19:47 - 19:49
    mathematical applications they call it
  • 19:49 - 19:51
    it's very practical it's not geared
  • 19:51 - 19:53
    towards getting you into University
  • 19:53 - 19:55
    although you can eventually move into
  • 19:55 - 19:57
    University or third level education it's
  • 19:57 - 19:59
    more practical course this students
  • 19:59 - 20:01
    would follow for two years the
  • 20:01 - 20:02
    traditional leaving start we would call
  • 20:02 - 20:05
    it is broken up then into three
  • 20:05 - 20:07
    different levels so students can access
  • 20:07 - 20:08
    a level that appropriate their needs and
  • 20:08 - 20:11
    abilities so technically while it's not
  • 20:11 - 20:14
    compulsory we have retention in Ireland
  • 20:14 - 20:17
    uh for for students from first year
  • 20:17 - 20:19
    lower secondary all the way to their
  • 20:19 - 20:22
    final upper secondary is over 90% so the
  • 20:22 - 20:25
    vast majority 98% of students would
  • 20:25 - 20:28
    follow some level of mathematics in in
  • 20:28 - 20:30
    Ireland
  • 20:30 - 20:33
    and if you having so many students do
  • 20:33 - 20:36
    that some 90% does that have an impact
  • 20:36 - 20:39
    which is quantifiable on the economy um
  • 20:39 - 20:41
    do you see it have a positive impact on
  • 20:41 - 20:44
    jobs or is that not is there not data to
  • 20:44 - 20:46
    show that yes we we do have some data to
  • 20:46 - 20:50
    show that um about
  • 20:50 - 20:52
    120,000 um Irish people would be
  • 20:52 - 20:56
    involved in stem educa stem um careers
  • 20:56 - 20:58
    and about a quarter of them are females
  • 20:58 - 21:00
    and we also have have statistic to show
  • 21:00 - 21:02
    that over the highest level of stem
  • 21:02 - 21:04
    graduates per capital we would have
  • 21:04 - 21:06
    between the 20 year years of age and 29
  • 21:06 - 21:09
    years of age in in comparison to Europe
  • 21:09 - 21:11
    so we would have a kind of um I suppose
  • 21:11 - 21:13
    a population who would be highly
  • 21:13 - 21:16
    qualified in the area of mathematics we
  • 21:16 - 21:17
    have a lot of industries that come into
  • 21:17 - 21:19
    Ireland um in the pharmaceutical
  • 21:19 - 21:21
    Industries and other that likes those
  • 21:21 - 21:23
    kind of industries that would require
  • 21:23 - 21:24
    mathematics in
  • 21:24 - 21:27
    Ireland thank you for that Eduardo let
  • 21:27 - 21:29
    me bring you back in to discuss some
  • 21:29 - 21:31
    more about the international data is
  • 21:31 - 21:35
    there any data that shows it's important
  • 21:35 - 21:38
    to teach more complex mathematics until
  • 21:38 - 21:39
    the age of
  • 21:39 - 21:41
    18 yeah definitely I think I think there
  • 21:41 - 21:43
    is a strongly evidence to support that
  • 21:43 - 21:45
    is important to to teach mathematics
  • 21:45 - 21:48
    during the during the upper secondary
  • 21:48 - 21:49
    and has implications not only for
  • 21:49 - 21:51
    individuals but also for society one of
  • 21:51 - 21:53
    the first things I wanted to to mention
  • 21:53 - 21:55
    here very briefly is that uh it's not
  • 21:55 - 21:57
    only not only about mathematics but also
  • 21:57 - 21:59
    numeracy while mathematics deals with
  • 21:59 - 22:03
    things as geometry algebra Etc numeracy
  • 22:03 - 22:05
    refers to the Practical ability to
  • 22:05 - 22:06
    understand these Concepts and apply them
  • 22:06 - 22:09
    on real life situations and these things
  • 22:09 - 22:10
    are
  • 22:10 - 22:12
    interconnected um many times people
  • 22:12 - 22:14
    would wonder oh why do I need this
  • 22:14 - 22:16
    certain content from the mathematics
  • 22:16 - 22:20
    program to to my daily life uh but but
  • 22:20 - 22:22
    the problem is is not only necessarily
  • 22:22 - 22:24
    by this content per se but about the
  • 22:24 - 22:26
    skills that this this gives to the to
  • 22:26 - 22:28
    the students and how they can apply them
  • 22:28 - 22:31
    then in their lives and this goes to a
  • 22:31 - 22:33
    goes from things to financial decisions
  • 22:33 - 22:36
    to health decision Etc and particular I
  • 22:36 - 22:38
    wanted to say about the the role of a
  • 22:38 - 22:40
    per secondary it's very often the last
  • 22:40 - 22:43
    stage of formal education people are uh
  • 22:43 - 22:45
    in contact with and it's just before
  • 22:45 - 22:47
    transitions to the transition to
  • 22:47 - 22:49
    adulthood where students many when
  • 22:49 - 22:51
    people many times will have to uh will
  • 22:51 - 22:52
    need these skills these numerously
  • 22:52 - 22:55
    related skills uh to make decisions in
  • 22:55 - 22:57
    very very complex decisions in the real
  • 22:57 - 22:59
    the real world setting but in more in
  • 22:59 - 23:01
    terms of data because because you
  • 23:01 - 23:03
    mentioned that there's some financial
  • 23:03 - 23:06
    data um we know from many studies and
  • 23:06 - 23:08
    studies in the UK particularly that uh
  • 23:08 - 23:11
    low numy skills are related to poor
  • 23:11 - 23:12
    financial decisions and there was one
  • 23:12 - 23:14
    stud in particular that says the annual
  • 23:14 - 23:18
    cost of around 460 pounds per year uh on
  • 23:18 - 23:21
    individuals that have low low numeracy
  • 23:21 - 23:23
    uh skills but also like in employment
  • 23:23 - 23:25
    and earnings we have some data from DOD
  • 23:25 - 23:28
    from from the P survey of adult skills
  • 23:28 - 23:31
    that I I mentioned uh early uh earlier
  • 23:31 - 23:34
    uh that St people with high numeracy
  • 23:34 - 23:36
    skills are more likely to to be employed
  • 23:36 - 23:40
    and earn per hour up to 133% more than
  • 23:40 - 23:42
    the their peers with lower numeracy
  • 23:42 - 23:44
    skills and not only that but we actually
  • 23:44 - 23:46
    see that this this impact on employment
  • 23:46 - 23:50
    and earnings is more is higher uh in
  • 23:50 - 23:51
    when we compare the numerous the
  • 23:51 - 23:53
    difference in numerous skills than
  • 23:53 - 23:54
    actually the differences in in literacy
  • 23:54 - 23:57
    skills so it's actually very important
  • 23:57 - 23:59
    but also the so societal level I want to
  • 23:59 - 24:01
    to make a last point it does affect
  • 24:01 - 24:03
    productivity national income social
  • 24:03 - 24:05
    wellbeing there was another state in the
  • 24:05 - 24:08
    UK that mentioned more than 20 billion
  • 24:08 - 24:12
    pounds per year of losses coming from uh
  • 24:12 - 24:15
    uh low numeracy skills uh that a lot of
  • 24:15 - 24:17
    people uh that lot a lot of percentage
  • 24:17 - 24:18
    of young people had in society and this
  • 24:18 - 24:21
    is equivalent to 1.3% of the GDP at the
  • 24:21 - 24:25
    time um and this also brings a question
  • 24:25 - 24:28
    of equity and distribution of skills um
  • 24:28 - 24:30
    a lot of times people that come from
  • 24:30 - 24:34
    more privileged backgrounds um actually
  • 24:34 - 24:36
    are the ones that are caught on this
  • 24:36 - 24:38
    Perpetual cycles of disadvantages and
  • 24:38 - 24:41
    having lower numeracy skills not
  • 24:41 - 24:42
    reaching the opportunities not reaching
  • 24:42 - 24:44
    the well the best paying jobs and
  • 24:44 - 24:46
    actually cannot break the this this
  • 24:46 - 24:48
    cycle so it's really important to
  • 24:48 - 24:50
    increase the the social Mobility to
  • 24:50 - 24:53
    restore the social elevator but also to
  • 24:53 - 24:55
    respond to a diverse and high skill
  • 24:55 - 24:57
    demands of today's economy so just uh
  • 24:57 - 24:59
    just to tell you like where where like
  • 24:59 - 25:01
    for example we see in pza level two it's
  • 25:01 - 25:04
    what we call the minimum proficiency uh
  • 25:04 - 25:07
    in mathematics is important uh we need
  • 25:07 - 25:09
    more and this is what the data from Pak
  • 25:09 - 25:12
    that I show earlier wanted meant is
  • 25:12 - 25:14
    meant to to tell you is precisely it
  • 25:14 - 25:16
    matters what happens after 15 it matters
  • 25:16 - 25:19
    what happens at the age of uh a per
  • 25:19 - 25:21
    secondary education and even perhaps
  • 25:21 - 25:23
    further so it's it's extremely important
  • 25:23 - 25:25
    that yes students to take this
  • 25:25 - 25:28
    discipline and uh acquire the numeracy
  • 25:28 - 25:30
    skills they need to lead successful
  • 25:30 - 25:33
    lives thank you so much for that Eduardo
  • 25:33 - 25:35
    and thank you to everyone who is in
  • 25:35 - 25:38
    sending in comments and questions uh hi
  • 25:38 - 25:42
    to Rachel from Bristol saying hello
  • 25:42 - 25:44
    greetings from Australia from Kina uh
  • 25:44 - 25:47
    Mel in Denmark saying hello and there's
  • 25:47 - 25:49
    a question from which has just jumped
  • 25:49 - 25:52
    off my screen from Ivon Elliot so I'll
  • 25:52 - 25:55
    I'll uh pose this question I think to
  • 25:55 - 25:58
    who's who's probably best yal at Malang
  • 25:58 - 26:00
    I think is probably best this question
  • 26:00 - 26:02
    ion Elliot asks yter do you think
  • 26:02 - 26:04
    mathematics is taught in a manner that
  • 26:04 - 26:07
    allows students to appreciate the need
  • 26:07 - 26:10
    to learn
  • 26:16 - 26:19
    mathematics I'm not sure but I'm
  • 26:19 - 26:22
    also I was thinking about whether we
  • 26:22 - 26:24
    whether it should be like that whether
  • 26:24 - 26:27
    we want you know students to learn
  • 26:27 - 26:30
    mathematics or indeed learn anything at
  • 26:30 - 26:31
    least if we talking about primary school
  • 26:31 - 26:33
    children because they feel the need to
  • 26:33 - 26:36
    do it I mean when when children enter
  • 26:36 - 26:41
    school at uh at six or five or seven
  • 26:41 - 26:42
    they're sort of little learning machines
  • 26:42 - 26:44
    right they want to learn they're really
  • 26:44 - 26:46
    really curious about the world and they
  • 26:46 - 26:49
    want to learn about reading they want to
  • 26:49 - 26:50
    learn about numbers they want to learn
  • 26:50 - 26:54
    about the world and then for whatever
  • 26:54 - 26:57
    reason uh we managed to make them less
  • 26:57 - 26:59
    interested in in learning I think 's
  • 26:59 - 27:02
    report showed this really well that when
  • 27:02 - 27:04
    you have those International assessments
  • 27:04 - 27:07
    that can uh that that have a measuring
  • 27:07 - 27:08
    Point both at fourth grade and e8th
  • 27:08 - 27:10
    grade you see that the children are
  • 27:10 - 27:12
    generally less or the young people are
  • 27:12 - 27:13
    less enthusiastic about learning
  • 27:13 - 27:15
    mathematics and other subjects when
  • 27:15 - 27:19
    they're older uh which I think is one of
  • 27:19 - 27:21
    the major problems we have with with
  • 27:21 - 27:22
    education in general and perhaps
  • 27:22 - 27:24
    mathematics
  • 27:24 - 27:28
    in in uh mathematics specifically so I
  • 27:28 - 27:32
    don't know whether it's the way we teach
  • 27:32 - 27:35
    uh La misses out because we don't manage
  • 27:35 - 27:37
    to communicate to students why
  • 27:37 - 27:40
    mathematics is important or whether it's
  • 27:40 - 27:43
    we fail for making it as engaging or
  • 27:43 - 27:45
    interesting as it should be but I'm I I
  • 27:45 - 27:46
    would certainly agree that there is
  • 27:46 - 27:50
    something about the way schooling is set
  • 27:50 - 27:52
    out and the way that mathematic is
  • 27:52 - 27:55
    taught where we seem to be losing people
  • 27:55 - 27:57
    losing children along the way and that's
  • 27:57 - 27:59
    certainly not good and we can see this
  • 27:59 - 28:01
    also moving you know beyond lower
  • 28:01 - 28:04
    secondary into all the different tracks
  • 28:04 - 28:05
    that all our countries have in Upper
  • 28:05 - 28:09
    secondary that the experiences that the
  • 28:09 - 28:11
    students the young people have had with
  • 28:11 - 28:14
    mathematics previously certainly have an
  • 28:14 - 28:17
    impact uh let's say the more vulnerable
  • 28:17 - 28:19
    student group we work with our national
  • 28:19 - 28:21
    education system I have I have talked to
  • 28:21 - 28:24
    teachers saying you know we really need
  • 28:24 - 28:26
    to before we can even get into teaching
  • 28:26 - 28:29
    mathematics we need to you know remove
  • 28:29 - 28:31
    from them all the bad experiences
  • 28:31 - 28:34
    they've had with uh being taught
  • 28:34 - 28:37
    mathematics previously uh and I mean
  • 28:37 - 28:39
    that's certainly important and I mean
  • 28:39 - 28:41
    most of those exper experiences are
  • 28:41 - 28:43
    experienced in in primary school so
  • 28:43 - 28:44
    there is something about how mathematics
  • 28:44 - 28:46
    is taught whether it's mathematics
  • 28:46 - 28:49
    specifically or whether it's something
  • 28:49 - 28:50
    in general with our schooling model I
  • 28:50 - 28:52
    don't know but we certainly have
  • 28:52 - 28:55
    challenges on on on retaining motivation
  • 28:55 - 28:57
    as as children grow older whereas very
  • 28:57 - 29:00
    few people have a problem with you know
  • 29:00 - 29:01
    maintaining the motivation to learn of
  • 29:01 - 29:03
    six years old and seven year olds right
  • 29:03 - 29:05
    me that's just just not a problem but it
  • 29:05 - 29:07
    it it increases as as they get
  • 29:07 - 29:10
    older thank you so much for that and
  • 29:10 - 29:11
    just a quick followup for you if you
  • 29:11 - 29:13
    don't mind because what kind of mats are
  • 29:13 - 29:16
    we talking about when you're teaching
  • 29:16 - 29:20
    older students um in Denmark is it is it
  • 29:20 - 29:21
    understanding how to do more complex
  • 29:21 - 29:23
    equations for example or is it giving
  • 29:23 - 29:26
    young people um information on how to
  • 29:26 - 29:27
    understand things like mortgages in car
  • 29:27 - 29:30
    loans what's sort of math are we talking
  • 29:30 - 29:35
    about well it depends I mean so for the
  • 29:35 - 29:39
    end of uh of a lower secondary right so
  • 29:39 - 29:40
    the last stages in which everyone
  • 29:40 - 29:43
    basically follows the same track you
  • 29:43 - 29:45
    know what which you do until you are 15
  • 29:45 - 29:48
    or 16 I mean there are more formal math
  • 29:48 - 29:50
    than there is when they're younger but
  • 29:50 - 29:53
    there is also an emphasis on uh on
  • 29:53 - 29:54
    applied math I think you know the idea
  • 29:54 - 29:56
    of mathematical competencies which is
  • 29:56 - 29:58
    basically that you should have some
  • 29:58 - 29:59
    skills and you should apply them to the
  • 29:59 - 30:02
    real world I think that's very strong in
  • 30:02 - 30:05
    in the Danish uh curriculum for uh for
  • 30:05 - 30:08
    lower secondary then moving into upper
  • 30:08 - 30:10
    secondary it it depends even more
  • 30:10 - 30:12
    because you know there are there are
  • 30:12 - 30:13
    different tracks right I mean there are
  • 30:13 - 30:16
    the general academic upper secondary
  • 30:16 - 30:18
    what we call gimnasium in Denmark
  • 30:18 - 30:21
    following sort of a German tradition and
  • 30:21 - 30:23
    even within that there are
  • 30:23 - 30:26
    different uh tracks that you can choose
  • 30:26 - 30:28
    from and some of them go more towards
  • 30:28 - 30:30
    mer education something more towards
  • 30:30 - 30:32
    technical education and something is
  • 30:32 - 30:34
    just more General academic and in all
  • 30:34 - 30:36
    these three you know they're supposed to
  • 30:36 - 30:37
    mathematics is supposed to be different
  • 30:37 - 30:39
    but of course once you you you finish
  • 30:39 - 30:42
    what we call a level or mathematics I
  • 30:42 - 30:45
    mean it becomes especially the general
  • 30:45 - 30:47
    academic it becomes quite theoretical
  • 30:47 - 30:49
    academic but of course always with an
  • 30:49 - 30:51
    emphasis on you know it should be used
  • 30:51 - 30:53
    for something it shouldn't just be for
  • 30:53 - 30:55
    its own sake but then you have a
  • 30:55 - 30:57
    completely different track in Upper
  • 30:57 - 30:59
    secondary which is vocation Education
  • 30:59 - 31:01
    and Training where you essentially train
  • 31:01 - 31:04
    to do a specific profession right you
  • 31:04 - 31:06
    train to become a carpenter or you train
  • 31:06 - 31:08
    to become a
  • 31:08 - 31:11
    um um something else right A technician
  • 31:11 - 31:14
    of some sort and I mean most
  • 31:14 - 31:17
    of the majority uh of sort of the the
  • 31:17 - 31:19
    technically minded profession
  • 31:19 - 31:21
    professions will have some requirements
  • 31:21 - 31:23
    for math there and there the curriculum
  • 31:23 - 31:25
    for the math studies you do will always
  • 31:25 - 31:28
    be geared towards the profession right
  • 31:28 - 31:29
    so so to the greatest extent possible
  • 31:29 - 31:31
    the teaching should be done with
  • 31:31 - 31:34
    examples that are relevant for the work
  • 31:34 - 31:37
    that's also because students in in the
  • 31:37 - 31:39
    vet track are often in the ret track
  • 31:39 - 31:40
    because they wanted to study a
  • 31:40 - 31:42
    profession not because they wanted to
  • 31:42 - 31:45
    study mathematics per se so it's
  • 31:45 - 31:47
    important to keep motivation and
  • 31:47 - 31:50
    engagement that also math class seem
  • 31:50 - 31:53
    relevant thank you so much for that one
  • 31:53 - 31:56
    of the key questions that OC report was
  • 31:56 - 31:58
    looking at was if there's a predominant
  • 31:58 - 32:01
    culture towards maass in different
  • 32:01 - 32:03
    countries that can influence the success
  • 32:03 - 32:07
    of policies uh Linda Ramsbottom from
  • 32:07 - 32:09
    Ireland's education department you're an
  • 32:09 - 32:11
    inspector so you're probably going in
  • 32:11 - 32:13
    and out of schools meeting teachers and
  • 32:13 - 32:16
    students and so on even maybe parents is
  • 32:16 - 32:19
    there sometimes an anti-mass mindset
  • 32:19 - 32:22
    among those who you meet in Ireland yes
  • 32:22 - 32:25
    I suppose um my role as an inspector
  • 32:25 - 32:26
    we're part of the division of the
  • 32:26 - 32:28
    Department of Education and we have a
  • 32:28 - 32:31
    dual role as such we have an evaluation
  • 32:31 - 32:33
    of we started early year so from about
  • 32:33 - 32:35
    three four years of age all the way
  • 32:35 - 32:37
    through to 18 19 years of age so we've
  • 32:37 - 32:39
    inspectorates for each of the different
  • 32:39 - 32:42
    sectors and we would regularly undertake
  • 32:42 - 32:44
    a variety of inspection models and we
  • 32:44 - 32:45
    have announced and unannounced
  • 32:45 - 32:47
    inspections and during the announced
  • 32:47 - 32:50
    inspections we would often um have focus
  • 32:50 - 32:52
    groups meetings with parents uh during
  • 32:52 - 32:54
    our whole school evaluations and we'd
  • 32:54 - 32:55
    often have then during the regular
  • 32:55 - 32:57
    inspections subject inspections in
  • 32:57 - 32:59
    particular mathematics or program
  • 32:59 - 33:00
    evaluations with have a number of
  • 33:00 - 33:02
    programs that we offer in in post
  • 33:02 - 33:04
    primary we would have a number of
  • 33:04 - 33:06
    meetings with the focus groups of
  • 33:06 - 33:08
    students we don't we don't like to call
  • 33:08 - 33:09
    our those anti-ms what we call their
  • 33:09 - 33:12
    perception of their ability and it was
  • 33:12 - 33:13
    interesting when Eduardo put up there
  • 33:13 - 33:15
    about the the little you know what the
  • 33:15 - 33:17
    child said about their own understanding
  • 33:17 - 33:19
    of mathematics I was never good at it
  • 33:19 - 33:21
    you'd often hear parents saying I was
  • 33:21 - 33:23
    never good so I don't expect my child to
  • 33:23 - 33:25
    be good at them or the child themselves
  • 33:25 - 33:27
    would say my brother or sister was
  • 33:27 - 33:29
    always better than I was at mathematics
  • 33:29 - 33:30
    and sometimes there's a gender
  • 33:30 - 33:33
    difference there as well more recently
  • 33:33 - 33:34
    in the last couple of weeks we've
  • 33:34 - 33:36
    started a project where we are looking
  • 33:36 - 33:40
    at the transfer from the upper upper uh
  • 33:40 - 33:43
    post Primary School into the first year
  • 33:43 - 33:45
    second year in post primary and looking
  • 33:45 - 33:47
    with the with a specific focus on
  • 33:47 - 33:50
    mathematics and we call these um an on
  • 33:50 - 33:51
    they're announced inspections for
  • 33:51 - 33:53
    incidental so it happens in in
  • 33:53 - 33:55
    incidental model and we're talking to
  • 33:55 - 33:57
    children and it's really interesting
  • 33:57 - 33:59
    listening to their voices and the kind
  • 33:59 - 34:01
    of the motivation that they have and
  • 34:01 - 34:03
    already they're having preconceived
  • 34:03 - 34:05
    ideas so that mindset is set nearly
  • 34:05 - 34:07
    before they even enter the post primary
  • 34:07 - 34:10
    lower post primary and then that'll
  • 34:10 - 34:12
    manifest itself as they go through I
  • 34:12 - 34:14
    think kind of come back to what you were
  • 34:14 - 34:15
    talking about a few minutes ago well
  • 34:15 - 34:17
    well we don't call it anti-at we think
  • 34:17 - 34:19
    it's kind of a perception about their
  • 34:19 - 34:22
    abilities um and I suppose looking at it
  • 34:22 - 34:23
    you know as they're how they're
  • 34:23 - 34:25
    motivated to learn and in Ireland I
  • 34:25 - 34:27
    suppose we can see as they move in to
  • 34:27 - 34:29
    the at the teaching practice that they
  • 34:29 - 34:31
    engage with they'd often say to you in
  • 34:31 - 34:33
    sixth class mind when I go into first
  • 34:33 - 34:35
    year the lower secondary it's going to
  • 34:35 - 34:37
    repeat of sixth class when I get into
  • 34:37 - 34:39
    second year there's a jump in my
  • 34:39 - 34:41
    education it's very different and then
  • 34:41 - 34:44
    we're ready for our first um high stakes
  • 34:44 - 34:46
    exam in the third year in lower
  • 34:46 - 34:48
    secondary and that determines sometimes
  • 34:48 - 34:49
    the approaches the methodologies that
  • 34:49 - 34:52
    are engaged with during the classes so
  • 34:52 - 34:53
    it can be once you get to high stakes we
  • 34:53 - 34:55
    find sometimes at the inspectorate we
  • 34:55 - 34:59
    would see the teachers per teachers um
  • 34:59 - 35:02
    pedagogies change um maybe sometimes
  • 35:02 - 35:04
    maybe it's not as engaging it's more you
  • 35:04 - 35:06
    know take it down from the board let's
  • 35:06 - 35:07
    make a note of this let's do the next
  • 35:07 - 35:09
    one do the next example do the next
  • 35:09 - 35:12
    question so I think pedagogi does have
  • 35:12 - 35:15
    an important influence on what happens
  • 35:15 - 35:16
    also coming back to something Edwardo
  • 35:16 - 35:19
    said there in Ireland in the last we've
  • 35:19 - 35:21
    had significant change in our curriculum
  • 35:21 - 35:24
    and I suppose in 2009 we had literacy
  • 35:24 - 35:26
    numeracy strategy but coming back to
  • 35:26 - 35:29
    numeracy in our new curriculum for
  • 35:29 - 35:31
    junior cycle the first three years of
  • 35:31 - 35:34
    lower secondary we' now have key skills
  • 35:34 - 35:36
    and we're looking at moving from a kind
  • 35:36 - 35:38
    of a comp a Content based curriculum to
  • 35:38 - 35:41
    a more skills based and one of the key
  • 35:41 - 35:43
    skills we have at Junior cycle would be
  • 35:43 - 35:46
    being numerous and what that entails and
  • 35:46 - 35:48
    moving into our post senior end our
  • 35:48 - 35:50
    upper secondary we're now looking at
  • 35:50 - 35:53
    revising our curriculum for upper
  • 35:53 - 35:54
    secondary and we're talking about key
  • 35:54 - 35:56
    competencies and we wrap around key
  • 35:56 - 35:59
    competencies we've ate key competencies
  • 35:59 - 36:01
    um but the real the main focus ones are
  • 36:01 - 36:03
    literacy anderes again and in each of
  • 36:03 - 36:05
    the curriculum specifications that are
  • 36:05 - 36:07
    being designed those key competencies
  • 36:07 - 36:09
    must factor into how the curriculum is
  • 36:09 - 36:11
    designed we've done it at Junior cycle
  • 36:11 - 36:13
    lower end but now we're moving it so
  • 36:13 - 36:16
    numeracy is quite a strong feature in
  • 36:16 - 36:18
    our mathematics and ensuring that
  • 36:18 - 36:20
    everybody has the ability and the skill
  • 36:20 - 36:23
    set um to implement it in Beyond
  • 36:23 - 36:25
    mathematics in other curriculum areas as
  • 36:25 - 36:27
    well so it's quite an interesting um
  • 36:27 - 36:29
    link that Eduardo has made as well
  • 36:29 - 36:30
    between mathematics and numeracy and
  • 36:30 - 36:32
    what we've done in Ireland so we're
  • 36:32 - 36:34
    still under a pathway of change
  • 36:34 - 36:36
    significant change our primary
  • 36:36 - 36:38
    curriculum is changing our early years
  • 36:38 - 36:40
    curriculum and framework that we use at
  • 36:40 - 36:42
    Asher is changing
  • 36:42 - 36:45
    also thank you for that Linda if I can
  • 36:45 - 36:47
    bring yelta back in on the question of
  • 36:47 - 36:51
    an anti-mass mindset is that much of an
  • 36:51 - 36:53
    issue in Denmark or
  • 36:53 - 36:57
    not I think I would say much the same
  • 36:57 - 36:58
    things Linda said right indeed building
  • 36:58 - 37:01
    on what I said before
  • 37:01 - 37:04
    that in many way mathematics might be an
  • 37:04 - 37:06
    Unforgiven subject right I mean at least
  • 37:06 - 37:11
    it's perceived as such uh that just
  • 37:11 - 37:14
    to say it really really really simply
  • 37:14 - 37:17
    and probably too simplistic but you know
  • 37:17 - 37:19
    an equation is either right or wrong and
  • 37:19 - 37:22
    making quite a few students scared of
  • 37:22 - 37:24
    mathematics right it's harder to just
  • 37:24 - 37:27
    Venture a guess or indeed having a a
  • 37:27 - 37:29
    discussion about let's think about this
  • 37:29 - 37:31
    problem mathematically because many
  • 37:31 - 37:33
    students think that mathematics is not
  • 37:33 - 37:35
    something you discuss right it's not
  • 37:35 - 37:37
    something where you reason together it's
  • 37:37 - 37:39
    something where you have you calculate
  • 37:39 - 37:40
    and then you have a right or a wrong
  • 37:40 - 37:42
    answer and that's not you know what
  • 37:42 - 37:43
    we're looking for in our curriculum
  • 37:43 - 37:45
    because we actually want students to be
  • 37:45 - 37:47
    able to see well we have this real life
  • 37:47 - 37:50
    problem let's translate it into
  • 37:50 - 37:52
    mathematics and then let's do some
  • 37:52 - 37:54
    calculations take the Cal the the
  • 37:54 - 37:56
    results of the calculations and
  • 37:56 - 37:59
    translate them back into real life
  • 37:59 - 38:02
    um and that's not often understood you
  • 38:02 - 38:04
    know it's more the Precision of
  • 38:04 - 38:06
    mathematics is often what people take
  • 38:06 - 38:09
    away from it so I wouldn't say anti in
  • 38:09 - 38:12
    the way that people have a coherent you
  • 38:12 - 38:14
    know opinion where they don't like math
  • 38:14 - 38:17
    it's more that I think the the quote
  • 38:17 - 38:18
    that Edo had on his slide you know
  • 38:18 - 38:20
    mathematics is just not for me or I've
  • 38:20 - 38:22
    had bad experience with mathematics in
  • 38:22 - 38:27
    the past is is is deeply ingrained in in
  • 38:27 - 38:28
    some student
  • 38:28 - 38:30
    who might also have had you know parents
  • 38:30 - 38:31
    saying exactly as was also on that slide
  • 38:31 - 38:33
    you know mathematics we were never good
  • 38:33 - 38:35
    at mathematics in this family um and I
  • 38:35 - 38:37
    think you know these kind of reactions
  • 38:37 - 38:40
    you can get that with students that have
  • 38:40 - 38:42
    had bad learning experiences in the past
  • 38:42 - 38:45
    you can get them in in any subject right
  • 38:45 - 38:47
    it's it's also really really really
  • 38:47 - 38:50
    prominent when you try to uh do dyslexia
  • 38:50 - 38:52
    teaching for adults that have just like
  • 38:52 - 38:55
    where reading is almost a traumatic
  • 38:55 - 38:56
    experience but I do think even though
  • 38:56 - 38:58
    you can get it across the Bo of subject
  • 38:58 - 39:01
    it's just it's prominent in mathematics
  • 39:01 - 39:02
    so it's not an anti I wouldn't call it a
  • 39:02 - 39:05
    culture in that you know it's not like
  • 39:05 - 39:08
    the the quotation from runak where there
  • 39:08 - 39:09
    are something in our culture where we
  • 39:09 - 39:12
    dislike math it's more that you know the
  • 39:12 - 39:14
    particular the more micro level
  • 39:14 - 39:16
    engagement that people that students
  • 39:16 - 39:18
    have had earlier on in their learning
  • 39:18 - 39:21
    careers uh with mathematics have made
  • 39:21 - 39:22
    them you
  • 39:22 - 39:25
    know like like that subject less and
  • 39:25 - 39:26
    then you know that's something you need
  • 39:26 - 39:29
    to work on a quick followup for you is a
  • 39:29 - 39:31
    question from Quan who's talking about
  • 39:31 - 39:33
    the rise of AI and other technologies
  • 39:33 - 39:35
    that can easily solve math problems is's
  • 39:35 - 39:38
    talking about and in a world of AI where
  • 39:38 - 39:40
    you can ask a computer to work out
  • 39:40 - 39:43
    almost anything specifically everyday
  • 39:43 - 39:46
    math questions um how is that impacting
  • 39:46 - 39:48
    the teaching of math and does math need
  • 39:48 - 39:49
    to
  • 39:49 - 39:53
    adapt so as I understand it uh AI is a
  • 39:53 - 39:54
    language model so it's actually much
  • 39:54 - 39:56
    worse I think the OCD did a project
  • 39:56 - 39:59
    where they tried to make uh artificial
  • 39:59 - 40:03
    intelligent work on on different uh
  • 40:03 - 40:04
    things and and you know in general they
  • 40:04 - 40:05
    they are less good at math than at
  • 40:05 - 40:07
    wordss your traditional computers are
  • 40:07 - 40:10
    good at words the sort of langu large
  • 40:10 - 40:12
    language models they're good at words
  • 40:12 - 40:13
    not numbers which is why they're
  • 40:13 - 40:15
    interesting anyway so of course you know
  • 40:15 - 40:19
    the society we live in uh impacts how we
  • 40:19 - 40:21
    should do I mean if for no other reason
  • 40:21 - 40:23
    as education systems we need to engage
  • 40:23 - 40:25
    with AI because it challenged our
  • 40:25 - 40:28
    examination model uh perhaps less so in
  • 40:28 - 40:30
    mathematics than in other subjects but
  • 40:30 - 40:31
    in Denmark we have sort of like long
  • 40:31 - 40:34
    form written assignments is quite quite
  • 40:34 - 40:36
    typical of how we assess and I mean
  • 40:36 - 40:39
    that's obviously the most AI vulnerable
  • 40:39 - 40:41
    way to assess so we need to we need to
  • 40:41 - 40:43
    take account of the fact that students
  • 40:43 - 40:46
    will probably use AI whether we want
  • 40:46 - 40:48
    them to or not so in that way we should
  • 40:48 - 40:50
    adapt but I mean at least personally I
  • 40:50 - 40:54
    haven't I don't think it's it's at least
  • 40:54 - 40:56
    currently I don't think there is any
  • 40:56 - 40:59
    need to revolutionize how we teach or
  • 40:59 - 41:00
    that there are any of the skills and
  • 41:00 - 41:03
    competences that we think are important
  • 41:03 - 41:05
    there none of those competen have become
  • 41:05 - 41:09
    less important with AI I don't think so
  • 41:09 - 41:11
    thank you so much for that again and I'd
  • 41:11 - 41:14
    like to for a moment if we all agree or
  • 41:14 - 41:16
    if most people agree watching this that
  • 41:16 - 41:17
    it is important for young people to
  • 41:17 - 41:20
    learn maths to a later age to 18 for
  • 41:20 - 41:22
    example uh as suggested at the start of
  • 41:22 - 41:24
    this webinar um how do you go about
  • 41:24 - 41:26
    doing that in practice particularly for
  • 41:26 - 41:28
    other countries where it might not be
  • 41:28 - 41:30
    the same approach uh Linda uh what
  • 41:30 - 41:32
    approach does Island
  • 41:32 - 41:35
    take yeah we have um at at the upper
  • 41:35 - 41:38
    senior cycle we have um we call it
  • 41:38 - 41:40
    senior cycle uh after our three-year
  • 41:40 - 41:42
    compulsory education up to the age of 16
  • 41:42 - 41:44
    or there about students can have the
  • 41:44 - 41:46
    option then of what we call a one-year
  • 41:46 - 41:49
    transition program so there's a one year
  • 41:49 - 41:50
    where students it's an optional program
  • 41:50 - 41:52
    and they can act up opt in or opt out of
  • 41:52 - 41:54
    the program if the school offers it in
  • 41:54 - 41:56
    their in their school in their school
  • 41:56 - 41:58
    area and and that would actually allow
  • 41:58 - 42:00
    them to follow on continue on with their
  • 42:00 - 42:02
    maths education in some format it
  • 42:02 - 42:04
    doesn't have to be formally it could
  • 42:04 - 42:06
    follow some aspects of the curriculum
  • 42:06 - 42:08
    for senior cycle but it shouldn't always
  • 42:08 - 42:10
    be in the full curriculum and then after
  • 42:10 - 42:12
    that year you have the two or three
  • 42:12 - 42:14
    further options we have what we call the
  • 42:14 - 42:17
    leaving certif leaving certificate
  • 42:17 - 42:19
    established and that offers three
  • 42:19 - 42:21
    different options to the students three
  • 42:21 - 42:23
    different levels of mathematics are
  • 42:23 - 42:25
    offered in that um leaving start
  • 42:25 - 42:28
    established we have a foundation level
  • 42:28 - 42:29
    which really cases for students
  • 42:29 - 42:31
    abilities who may want mathematics for
  • 42:31 - 42:34
    everyday life and may not want to go on
  • 42:34 - 42:37
    to further studies but may need it as an
  • 42:37 - 42:39
    access point to maybe a trade or an
  • 42:39 - 42:41
    apprenticeship we then have we call the
  • 42:41 - 42:43
    next level up will be ordinary level and
  • 42:43 - 42:45
    in the ordinary level then that will be
  • 42:45 - 42:47
    Geared for students who who are dealing
  • 42:47 - 42:49
    with kind of abstract they're starting
  • 42:49 - 42:52
    to begin with abstract IDE ideas um and
  • 42:52 - 42:54
    they would access the third level
  • 42:54 - 42:56
    education at a different level to what
  • 42:56 - 42:58
    their needs would be but the higher
  • 42:58 - 42:59
    level then is the top level we would
  • 42:59 - 43:02
    have in our twoyear final two years of
  • 43:02 - 43:04
    examination and that is geared towards
  • 43:04 - 43:06
    students who want to progress the
  • 43:06 - 43:08
    further studies of mathematics or other
  • 43:08 - 43:10
    disciplines associated with mathematics
  • 43:10 - 43:12
    and that would be developing um I
  • 43:12 - 43:15
    suppose the powers of abstraction and
  • 43:15 - 43:17
    generalization so there are the kind of
  • 43:17 - 43:19
    traditional established leaving
  • 43:19 - 43:21
    certificate the leaving certificate
  • 43:21 - 43:23
    applied then is a standalone two-year
  • 43:23 - 43:26
    program however more recently that has
  • 43:26 - 43:28
    um we've allowed the students to to who
  • 43:28 - 43:30
    are taking the leaving certify program
  • 43:30 - 43:32
    to access the leaving certif leaving
  • 43:32 - 43:35
    certificate established mathematics so
  • 43:35 - 43:37
    they can opt to do their leaving C
  • 43:37 - 43:41
    Applied Mathematics and and or follow
  • 43:41 - 43:43
    the ordinary level or higher level or
  • 43:43 - 43:46
    Foundation level depending on the school
  • 43:46 - 43:48
    so we have a range of options available
  • 43:48 - 43:50
    to students so we don't just after the
  • 43:50 - 43:52
    junior cycle that's it you don't have
  • 43:52 - 43:53
    options there are three more levels that
  • 43:53 - 43:56
    they can continue on with um and I
  • 43:56 - 44:00
    suppose after that we would um um we
  • 44:00 - 44:02
    also offer for students who take the
  • 44:02 - 44:05
    higher level program the higher level
  • 44:05 - 44:08
    option we've brought in um a bonus point
  • 44:08 - 44:10
    we call it that's purely for students
  • 44:10 - 44:12
    who want to go on to third level so they
  • 44:12 - 44:15
    get an extra 25 bonus points we call it
  • 44:15 - 44:17
    all of our students who sit their
  • 44:17 - 44:19
    leaving certif leaving certificate um
  • 44:19 - 44:22
    receive based on what award they receive
  • 44:22 - 44:24
    a H1 or whatever it is they receive
  • 44:24 - 44:26
    points and an additional point is added
  • 44:26 - 44:28
    on for higher level math matics not for
  • 44:28 - 44:30
    ordinary level not for foundation just
  • 44:30 - 44:32
    for higher level so I suppose they're
  • 44:32 - 44:34
    the kind of ways the the curriculum ways
  • 44:34 - 44:37
    that we can support
  • 44:41 - 44:43
    students sorry thank you very much I
  • 44:43 - 44:45
    need to unmute myself um a quick
  • 44:45 - 44:47
    followup for you actually because
  • 44:47 - 44:49
    there's a it's a statement from elizabe
  • 44:49 - 44:51
    Pastor on the chat who says my
  • 44:51 - 44:53
    experience is that people think that
  • 44:53 - 44:55
    being good at mathematics is a question
  • 44:55 - 44:59
    of talent and not of hard work this is a
  • 44:59 - 45:02
    serious problem if teachers reinforce
  • 45:02 - 45:04
    this impression what what experience do
  • 45:04 - 45:07
    you have uh in irland related to that
  • 45:07 - 45:11
    kind of issue yeah I suppose from my
  • 45:11 - 45:12
    perspective being in and out of
  • 45:12 - 45:14
    classrooms we can see that that there
  • 45:14 - 45:15
    are some teachers who would perceive
  • 45:15 - 45:17
    that a student if they're talented
  • 45:17 - 45:18
    they're excellent they'll be very good
  • 45:18 - 45:20
    at mathematics it's not always the case
  • 45:20 - 45:22
    you always have to you will see students
  • 45:22 - 45:24
    who would try their best and work hard
  • 45:24 - 45:26
    and will be quite good mathematically I
  • 45:26 - 45:28
    think sometimes it's how they it's their
  • 45:28 - 45:30
    motivation I suppose their exposure from
  • 45:30 - 45:33
    an early stage of as as we've already
  • 45:33 - 45:35
    spoken about I suppose you know that
  • 45:35 - 45:37
    need to kind of tease out questions talk
  • 45:37 - 45:40
    through the possibilities not just one
  • 45:40 - 45:41
    answer is the only answer and maybe yes
  • 45:41 - 45:43
    there are talented kids who are quite
  • 45:43 - 45:44
    good they will get to An Answer without
  • 45:44 - 45:46
    even thinking about or writing anything
  • 45:46 - 45:48
    down but some students have to work
  • 45:48 - 45:50
    through a process and I suppose it's the
  • 45:50 - 45:53
    ability of a teacher to understand that
  • 45:53 - 45:55
    some students have the ability to an
  • 45:55 - 45:57
    innate ability to understand and
  • 45:57 - 45:59
    different way and that not one approach
  • 45:59 - 46:01
    is the only approach and I find
  • 46:01 - 46:03
    sometimes in my inspection work we can
  • 46:03 - 46:05
    see that that it has to be the teacher's
  • 46:05 - 46:07
    way to do the question and not allowing
  • 46:07 - 46:09
    for the creativity amongst the students
  • 46:09 - 46:10
    and understanding and teasing out why
  • 46:10 - 46:12
    did you say that is there a
  • 46:12 - 46:13
    misconception here and using that
  • 46:13 - 46:16
    misconception to develop a students
  • 46:16 - 46:17
    understanding what's happening in the
  • 46:17 - 46:19
    Math's classroom so I think you are
  • 46:19 - 46:20
    right I think Talent is always
  • 46:20 - 46:22
    misunderstood as being very good at
  • 46:22 - 46:24
    mathematics it can be hard work that you
  • 46:24 - 46:26
    need to think about it work through and
  • 46:26 - 46:27
    see different problems in in different
  • 46:27 - 46:29
    ways and in different
  • 46:29 - 46:31
    contexts thank you so much I want to
  • 46:31 - 46:33
    bring Eduardo back in to get his
  • 46:33 - 46:35
    Reflections on some of the past few
  • 46:35 - 46:36
    comments also there's loads of stuff
  • 46:36 - 46:39
    going on in the chat apologies right now
  • 46:39 - 46:40
    it's moving so quickly I'm actually
  • 46:40 - 46:42
    struggling to read it but yeah AO if I
  • 46:42 - 46:44
    can bring you back in what are General
  • 46:44 - 46:47
    approaches that the oecd is taking oecd
  • 46:47 - 46:49
    countries I should say are taking to
  • 46:49 - 46:53
    encourage people to to stay in Ms yeah
  • 46:53 - 46:56
    so um building up uh on what building on
  • 46:56 - 46:58
    what Lindo was was talking about is very
  • 46:58 - 47:00
    important to understand that in
  • 47:00 - 47:03
    mathematics and particularly in F
  • 47:03 - 47:04
    fundamental disciplines like like
  • 47:04 - 47:07
    mathematics there is a individual
  • 47:07 - 47:09
    individual development rates and not uh
  • 47:09 - 47:12
    every not every student does develop it
  • 47:12 - 47:15
    like at the at the same Pace uh so I
  • 47:15 - 47:17
    mean while while for instance some some
  • 47:17 - 47:20
    students might have a great great skills
  • 47:20 - 47:24
    uh at 15 many many do need like after
  • 47:24 - 47:27
    after after 15 16 to solidify solidify
  • 47:27 - 47:29
    this FAL so I think the main the main
  • 47:29 - 47:31
    conclusion we take by looking at the
  • 47:31 - 47:34
    different o systems is the importance of
  • 47:34 - 47:36
    flexibility a lot of times when there is
  • 47:36 - 47:39
    no flexibility on how we provide
  • 47:39 - 47:42
    mathematics how we teach mathematics we
  • 47:42 - 47:44
    we might uh get students stuck in
  • 47:44 - 47:46
    certain milestones and then experience
  • 47:46 - 47:49
    problems of cycles of repetition of dis
  • 47:49 - 47:52
    motivation of this sense of failure and
  • 47:52 - 47:53
    um these more on the on the on the
  • 47:53 - 47:56
    policy side of the provision of
  • 47:56 - 47:58
    mathematics and um the assessments
  • 47:58 - 47:59
    actually there was a comment from I
  • 47:59 - 48:01
    believe Elizabeth that mentioned the
  • 48:01 - 48:03
    Reed in gcsc and this is actually a
  • 48:03 - 48:05
    great example to to to bring during this
  • 48:05 - 48:06
    discussion because in England for
  • 48:06 - 48:09
    instance when we saw at 16 when students
  • 48:09 - 48:11
    take the the match CSS and they don't
  • 48:11 - 48:15
    achieve grade four um when they don't
  • 48:15 - 48:16
    achieve at least this grade four they
  • 48:16 - 48:18
    need to take these resits meaning they
  • 48:18 - 48:21
    need to after 16 continue to do to try
  • 48:21 - 48:23
    to pass and a lot of times uh they just
  • 48:23 - 48:25
    get stuck on this cycle of repetition of
  • 48:25 - 48:27
    doing the same thing over and over again
  • 48:27 - 48:29
    which might imprint this sense of
  • 48:29 - 48:31
    failure this the motivation and also
  • 48:31 - 48:33
    create this fear of mathematics this
  • 48:33 - 48:36
    horrible thing they cannot get rid of um
  • 48:36 - 48:39
    so it's an important policy question if
  • 48:39 - 48:42
    uh the one fit size fits all policy is
  • 48:42 - 48:44
    actually the most effective approach and
  • 48:44 - 48:47
    uh in indeed it is not we need like a
  • 48:47 - 48:50
    diverse range of solutions um the the
  • 48:50 - 48:53
    the what Linda described as the like the
  • 48:53 - 48:55
    the Irish case with the different levels
  • 48:55 - 48:57
    or even we know also from d Mark there's
  • 48:57 - 49:00
    there is diversity are definitely a are
  • 49:00 - 49:02
    very important strategies to to do this
  • 49:02 - 49:05
    and to to make sure that we have a Tor
  • 49:05 - 49:08
    offer of students on how according to
  • 49:08 - 49:11
    their strengths and interests uh but the
  • 49:11 - 49:13
    main point here I I will I will say
  • 49:13 - 49:15
    again because it's really important to
  • 49:15 - 49:18
    to to say this is the diversity and um
  • 49:18 - 49:20
    there are also other ways for instance I
  • 49:20 - 49:21
    want to bring in the example from
  • 49:21 - 49:23
    Austria which is one of the peer
  • 49:23 - 49:26
    countries although for instance Austria
  • 49:26 - 49:28
    uh only have one maatic option in each
  • 49:28 - 49:31
    program that is mandatory uh there is a
  • 49:31 - 49:34
    variety of programs as offers many
  • 49:34 - 49:36
    programs and in particular in the
  • 49:36 - 49:40
    vocational uh sector uh it's extreme is
  • 49:40 - 49:42
    a extreme reach sector in which they
  • 49:42 - 49:44
    have mathematics taught in different
  • 49:44 - 49:47
    forms in many cases applies as well as
  • 49:47 - 49:49
    in different subjects ma imprinted on
  • 49:49 - 49:52
    the way they they they teach some trades
  • 49:52 - 49:54
    and some some other subjects and this is
  • 49:54 - 49:56
    extremely important because it provides
  • 49:56 - 50:00
    uh diverse range of Pathways uh and it
  • 50:00 - 50:04
    guarantees at least that students uh can
  • 50:04 - 50:06
    can can deal with Matas in different
  • 50:06 - 50:09
    ways and not and not only in one which
  • 50:09 - 50:10
    is important for their success and for
  • 50:10 - 50:14
    for their engagement um so yeah I would
  • 50:14 - 50:16
    say I would say definitely this is one
  • 50:16 - 50:18
    of the main messages uh we wanted to
  • 50:18 - 50:22
    bring is to uh one size fitall policies
  • 50:22 - 50:24
    normally don't work that well and uh try
  • 50:24 - 50:28
    to be open to to cater from the French
  • 50:28 - 50:30
    students thank you very much Eduardo and
  • 50:30 - 50:32
    thanks for all the messages coming in on
  • 50:32 - 50:34
    the chat as well I'll quickly run
  • 50:34 - 50:37
    through a few of them uh vmir writes
  • 50:37 - 50:39
    excellence in maths is a gift from God
  • 50:39 - 50:42
    which demands hard work but Maths for
  • 50:42 - 50:45
    every day is a result of hard work only
  • 50:45 - 50:47
    um in contrast I'm trying to ZIP down
  • 50:47 - 50:52
    here uh Vester writes mathematics is not
  • 50:52 - 50:55
    only talent but also hard work and it's
  • 50:55 - 50:57
    needed to develop logical thinking in
  • 50:57 - 50:59
    solving problems and there are loads
  • 50:59 - 51:00
    more comments as well but we really
  • 51:00 - 51:01
    don't have time to go through all of
  • 51:01 - 51:04
    them Y at Malang from Denmark's children
  • 51:04 - 51:06
    and education Ministry if I can bring
  • 51:06 - 51:08
    you back in because I want to talk to
  • 51:08 - 51:09
    you about student perceptions which we
  • 51:09 - 51:12
    did touch on earlier on Denmark does
  • 51:12 - 51:14
    comparatively well in math to those who
  • 51:14 - 51:17
    don't know uh internationally uh but
  • 51:17 - 51:19
    when you look at student perceptions
  • 51:19 - 51:20
    there is quite a big drop off between
  • 51:20 - 51:23
    primary and secondary schools and the
  • 51:23 - 51:26
    decline is pretty big in Denmark we see
  • 51:26 - 51:27
    this trend in lots of countries but the
  • 51:27 - 51:31
    decline is pretty steep in Denmark so
  • 51:31 - 51:32
    why do you think that is and is anything
  • 51:32 - 51:35
    being done to try and combat
  • 51:35 - 51:41
    that so I think I I I spoke to that uh
  • 51:41 - 51:43
    earlier right that there is there seems
  • 51:43 - 51:48
    to be a general uh problem with uh
  • 51:48 - 51:52
    children being more motivated to learn
  • 51:52 - 51:55
    than younger uh than um than older CH
  • 51:55 - 51:57
    older children and then you know old
  • 51:57 - 51:58
    older children becoming less motivated
  • 51:58 - 52:00
    as they go older so I mean we don't I
  • 52:00 - 52:04
    don't think we have any particular
  • 52:04 - 52:07
    policy on sort of like say the the stage
  • 52:07 - 52:10
    where you move from upper secondary to
  • 52:10 - 52:12
    lower secondary on but it's definitely a
  • 52:12 - 52:14
    part of our general let's say problem
  • 52:14 - 52:16
    description uh a couple of years ago we
  • 52:16 - 52:18
    had an expert group on mathematics
  • 52:18 - 52:21
    across uh both uh basic education and
  • 52:21 - 52:23
    upper second theory and all the the
  • 52:23 - 52:25
    tracks within the upper second that's
  • 52:25 - 52:28
    tried to uh look at at a a holistic
  • 52:28 - 52:30
    picture of mathematics teaching in
  • 52:30 - 52:32
    Denmark and you know this this issue
  • 52:32 - 52:35
    that you're talking about with the
  • 52:35 - 52:37
    students being disengaged is definitely
  • 52:37 - 52:39
    a part of that problem especially
  • 52:39 - 52:42
    because it means that it's um I think I
  • 52:42 - 52:44
    I'm repeating something I said earlier
  • 52:44 - 52:47
    but uh it's harder to teach a class
  • 52:47 - 52:50
    where you have not only
  • 52:50 - 52:54
    a uh not only variation in skill but
  • 52:54 - 52:56
    also a variation in motivation and a
  • 52:56 - 52:59
    motivation in self efficacy so uh
  • 52:59 - 53:03
    especially for uh um our vet tracks and
  • 53:03 - 53:05
    also our tracks for those that didn't
  • 53:05 - 53:08
    find an easy path path through education
  • 53:08 - 53:09
    uh there are quite a few students there
  • 53:09 - 53:11
    that that really have this uh
  • 53:11 - 53:13
    mathematics was not for me mindset and
  • 53:13 - 53:14
    you know that's definitely something
  • 53:14 - 53:16
    that you need to to address and I think
  • 53:16 - 53:20
    that's probably addressed best
  • 53:20 - 53:23
    uh by using different strategies in the
  • 53:23 - 53:25
    different tracks of Education because
  • 53:25 - 53:26
    you have different students so in the
  • 53:26 - 53:30
    sort of more practically oriented uh vet
  • 53:30 - 53:33
    track I think it's one one good way of
  • 53:33 - 53:35
    addressing motivation of students is to
  • 53:35 - 53:38
    show how mathematics is relevant to the
  • 53:38 - 53:39
    profession that they are there to learn
  • 53:39 - 53:42
    I mean they're motivated to train that
  • 53:42 - 53:45
    profession that they elected into and we
  • 53:45 - 53:47
    then think that it's probably good for
  • 53:47 - 53:48
    them to have some general mathematics as
  • 53:48 - 53:50
    well but that General mathematics should
  • 53:50 - 53:52
    be taught so that it's always clear to
  • 53:52 - 53:55
    the students that it's relevant then if
  • 53:55 - 53:58
    you go to academic up a secondary where
  • 53:58 - 54:00
    students or at least some of them are
  • 54:00 - 54:02
    are should be prep prepared for study in
  • 54:02 - 54:04
    The Sciences physics mathematics
  • 54:04 - 54:06
    chemistry where you kind of need
  • 54:06 - 54:09
    abstract Advanced mathematical skills um
  • 54:09 - 54:11
    in that way it's probably okay to focus
  • 54:11 - 54:14
    more on mathematics in its own in its
  • 54:14 - 54:17
    own sense so I mean I think it's uh just
  • 54:17 - 54:20
    as most countries in the world have more
  • 54:20 - 54:22
    differentiated education systems after
  • 54:22 - 54:24
    the age of 15 16 right and I think the
  • 54:24 - 54:26
    the solutions for this for how to cheat
  • 54:26 - 54:29
    math best is probably to build on
  • 54:29 - 54:31
    whatever was built into your system and
  • 54:31 - 54:35
    then tailor the teaching of math to uh
  • 54:35 - 54:37
    whatever track the students are in thank
  • 54:37 - 54:39
    you very much Linda if I can bring you
  • 54:39 - 54:41
    back in on the subject of lifelong
  • 54:41 - 54:44
    learning um we spoke we focus a lot on
  • 54:44 - 54:47
    you know students and then you know um
  • 54:47 - 54:48
    Yalta there was just explaining you know
  • 54:48 - 54:50
    differences between primary age and the
  • 54:50 - 54:52
    age of 15y old but what about adults how
  • 54:52 - 54:57
    do you engage or re-engage adults in in
  • 54:57 - 54:59
    math so that they're better equipped to
  • 54:59 - 55:00
    deal with societies which are becoming
  • 55:00 - 55:02
    more complex with more complex data and
  • 55:02 - 55:04
    more complex
  • 55:04 - 55:06
    Technologies Now in Ireland we have a
  • 55:06 - 55:08
    dedicated support service we call it
  • 55:08 - 55:11
    it's it's like teacher it's an Irish
  • 55:11 - 55:14
    word for um teacher um it's a
  • 55:14 - 55:15
    culmination of a number of support
  • 55:15 - 55:17
    services that we've had over a number of
  • 55:17 - 55:19
    years they traditionally they would have
  • 55:19 - 55:23
    had um an opportunity to engage with
  • 55:23 - 55:25
    teachers through um you know a variety
  • 55:25 - 55:27
    of different supports and now it's
  • 55:27 - 55:29
    emerged into this one dedicated um
  • 55:29 - 55:31
    support service and I suppose in terms
  • 55:31 - 55:35
    of mathematics we have um it provides a
  • 55:35 - 55:38
    support service in terms of one day um
  • 55:38 - 55:39
    release from school so teachers of
  • 55:39 - 55:41
    mathematics when a new curriculum is
  • 55:41 - 55:43
    established they have a number of days
  • 55:43 - 55:45
    one usually one or two per year and the
  • 55:45 - 55:47
    teachers would access that in addition
  • 55:47 - 55:49
    then the support services also have uh
  • 55:49 - 55:51
    worked on initiatives what we call um
  • 55:51 - 55:55
    numeracy Deep dive where the mathematics
  • 55:55 - 55:57
    teacher would collaborate with an we
  • 55:57 - 55:59
    call it um a carrier subject so would
  • 55:59 - 56:01
    say maybe geography or something like
  • 56:01 - 56:02
    that would have a level of mathematics
  • 56:02 - 56:04
    in it and it kind of promote numeracy in
  • 56:04 - 56:07
    the classroom and promote good
  • 56:07 - 56:09
    mathematical skills and competencies
  • 56:09 - 56:11
    throughout the system so you have a peer
  • 56:11 - 56:13
    working with you so your colleague would
  • 56:13 - 56:14
    be working with you to develop your
  • 56:14 - 56:17
    numeracy skills but also to support the
  • 56:17 - 56:19
    consistency in approaches and and
  • 56:19 - 56:20
    language that was used in the
  • 56:20 - 56:22
    mathematics class into other discipline
  • 56:22 - 56:26
    areas we would also have um out of field
  • 56:26 - 56:28
    report so teachers who want to come back
  • 56:28 - 56:30
    in and re-engage as a mathematics
  • 56:30 - 56:32
    teacher um the department has funded
  • 56:32 - 56:35
    since 2012 we've had two versions 2012
  • 56:35 - 56:38
    to about 2018 and 2019 then it started a
  • 56:38 - 56:42
    second um uh phase of this um support
  • 56:42 - 56:44
    the department will fund um upskilling
  • 56:44 - 56:45
    of teachers who want to come back into
  • 56:45 - 56:48
    the education system who have a degree
  • 56:48 - 56:50
    but are not mathematics teachers and
  • 56:50 - 56:51
    that has helped us to a certain extent
  • 56:51 - 56:53
    with supporting the lifelong learning of
  • 56:53 - 56:54
    teachers in
  • 56:54 - 56:57
    mathematics thank you so much look we
  • 56:57 - 56:59
    are almost out of time but I'm going to
  • 56:59 - 57:02
    do a quick fire around with our panelist
  • 57:02 - 57:03
    just before they go and thanks to
  • 57:03 - 57:05
    everyone again for sending in your
  • 57:05 - 57:08
    questions so yal I think I'll start with
  • 57:08 - 57:12
    you um if there was one suggestion for a
  • 57:12 - 57:14
    priority action that countries could
  • 57:14 - 57:17
    take to make maths more appealing to
  • 57:17 - 57:19
    more students if we're talking about
  • 57:19 - 57:21
    this culture of mathematics what
  • 57:21 - 57:23
    priority action would you recommend to
  • 57:23 - 57:24
    make maths more appealing to more
  • 57:24 - 57:27
    students
  • 57:28 - 57:32
    I think it's probably uh important to uh
  • 57:32 - 57:34
    make sure that students have early on
  • 57:34 - 57:37
    the right foundation so focus on letting
  • 57:37 - 57:39
    what we in D is call number
  • 57:39 - 57:41
    comprehension which is the basic Al
  • 57:41 - 57:43
    algebra that then too many students miss
  • 57:43 - 57:45
    out on that and then that just haunts
  • 57:45 - 57:46
    them for the rest of their education
  • 57:46 - 57:49
    system so sort of teaching them the most
  • 57:49 - 57:51
    important most foundational stuff early
  • 57:51 - 57:54
    on and then you know kindling the flame
  • 57:54 - 57:57
    and keeping it alive by by not making
  • 57:57 - 58:00
    them experience defeat after defeat
  • 58:00 - 58:02
    because they missed some basic stuff
  • 58:02 - 58:03
    early on would probably be very
  • 58:03 - 58:05
    important thank you very much and Linda
  • 58:05 - 58:08
    Rams botton totally agree and I suppose
  • 58:08 - 58:10
    we have a policy now that our literacy
  • 58:10 - 58:12
    numeracy and digital literacy strategy
  • 58:12 - 58:14
    if and get all my strategies out here we
  • 58:14 - 58:16
    had uh initially was in primary and
  • 58:16 - 58:18
    post- primary now we' brought it back to
  • 58:18 - 58:20
    the early year settings as well so we've
  • 58:20 - 58:21
    included the early year settings with
  • 58:21 - 58:24
    numeracy so developing that love and
  • 58:24 - 58:26
    that fun and the sense of achievement at
  • 58:26 - 58:28
    an early stage and developing it through
  • 58:28 - 58:30
    through practical you know real life
  • 58:30 - 58:32
    experiences and the continuity
  • 58:32 - 58:34
    appropriate continuity and teasing out
  • 58:34 - 58:35
    those questions with kids that's what I
  • 58:35 - 58:37
    would recommend if I could at all thanks
  • 58:37 - 58:40
    ail thanks so much and last but not
  • 58:40 - 58:43
    least oec policy analyst Eduardo madish
  • 58:43 - 58:45
    uh what do you think uh how do you make
  • 58:45 - 58:47
    maths more appealing to students what's
  • 58:47 - 58:49
    the one priority action you'd recommend
  • 58:49 - 58:51
    well our work is mostly on up per
  • 58:51 - 58:53
    secondary education and I I mean and
  • 58:53 - 58:55
    yelta and Linda already talked very well
  • 58:55 - 58:57
    about the previous the the younger age
  • 58:57 - 58:59
    than the primary but I would like to say
  • 58:59 - 59:00
    that at least at the per secondary
  • 59:00 - 59:02
    education level it would be important to
  • 59:02 - 59:04
    adapt to needs of all students uh
  • 59:04 - 59:07
    regardless of their previous experiences
  • 59:07 - 59:10
    we should build um diverse Pathways to
  • 59:10 - 59:12
    make sure they actually can many times
  • 59:12 - 59:15
    catch up they can change the perception
  • 59:15 - 59:16
    of mathematics and they can build the
  • 59:16 - 59:18
    skills they actually they need uh for
  • 59:18 - 59:21
    the future and to keep the doors open so
  • 59:21 - 59:22
    again I wanted to underline the question
  • 59:22 - 59:25
    of option levels also some Bridge
  • 59:25 - 59:28
    programs uh I this focus on not leaving
  • 59:28 - 59:32
    anyone behind despite uh any negative
  • 59:32 - 59:34
    experiences before I think it's the main
  • 59:34 - 59:36
    the central point I want to make on how
  • 59:36 - 59:39
    to improve the relationship with with
  • 59:39 - 59:42
    mathematics thank you so much to Eduardo
  • 59:42 - 59:44
    from the oecd of course also to yaa
  • 59:44 - 59:46
    malvan from Denmark's children and
  • 59:46 - 59:48
    education Ministry and also to Linda
  • 59:48 - 59:51
    Rams Borton from Ireland's Department of
  • 59:51 - 59:53
    Education that is it for now I'm afraid
  • 59:53 - 59:55
    thank you to the production team for all
  • 59:55 - 59:56
    their help behind the scenes and thank
  • 59:56 - 59:59
    you for tuning in for this o webinar we
  • 59:59 - 60:01
    will have plenty more of them in store
  • 60:01 - 60:04
    for you right up until Christmas uh
  • 60:04 - 60:07
    please do check out the new oecd report
  • 60:07 - 60:09
    Maths for life and work which this
  • 60:09 - 60:11
    webinar has been based on you'll be able
  • 60:11 - 60:12
    to learn much more about what we have
  • 60:12 - 60:15
    discussed the link was shared in the
  • 60:15 - 60:17
    chat also please do also check out the
  • 60:17 - 60:21
    oecd education podcast top class which
  • 60:21 - 60:23
    has featured various episodes on
  • 60:23 - 60:25
    mathematics including a chat with the US
  • 60:25 - 60:28
    teacher of the year who happens to be a
  • 60:28 - 60:31
    math teacher herself that's it for now
  • 60:31 - 60:33
    hope to see you for another o webinar
  • 60:33 - 60:37
    soon all the best
Title:
Webinar: Understanding international differences in maths
Description:

more » « less
Video Language:
English
Duration:
01:00:38

Greek subtitles

Incomplete

Revisions Compare revisions