< Return to Video

Simplifying square roots

  • 0:00 - 0:05
  • 0:05 - 0:09
    Sprawdźmy, czy potrafimy uprościć
    5 razy pierwiastek kwadratowy z 117.
  • 0:09 - 0:13
    Nie widzę na pierwszy rzut oka
    jak rozłożyć 117.
  • 0:13 - 0:15
    Więc rozłóżmy to
    na czynniki pierwsze
  • 0:15 - 0:20
    i sprawdźmy czy te czynniki
    pierwsze pojawiają się częściej niż raz.
  • 0:20 - 0:22
    Oczywiście jest to liczba nieparzysta.
  • 0:22 - 0:24
    Wyraźnie nie dzieli się przez 2.
  • 0:24 - 0:26
    By sprawdzić czy liczba jest
    podzielna przez 3,
  • 0:26 - 0:27
    możemy zsumować wszystkie
    cyfry.
  • 0:27 - 0:30
    A dlaczego to działa,
    wyjaśniamy gdzie indziej w Khan Academy.
  • 0:30 - 0:32
    Jeśli jednak zsumujemy wszystkie
    cyfry, otrzymujemy 9.
  • 0:32 - 0:36
    I 9 jest podzielne przez 3,
    więc 117 jest podzielne przez 3.
  • 0:36 - 0:38
    Teraz, zróbmy to na boku
  • 0:38 - 0:41
    by sprawdzić ile 117
    podzielone przez 3 właściwie jest.
  • 0:41 - 0:44
    3 nie mieści się w 1.
  • 0:44 - 0:46
    Mieści się w 11, 3 razy.
  • 0:46 - 0:48
    3 razy 3 to 9.
  • 0:48 - 0:50
    Jak odejmiemy,
    mamy resztę 2.
  • 0:50 - 0:53
    Przepiszmy 7.
  • 0:53 - 0:56
    3 mieści się w 27
    9 razy.
  • 0:56 - 0:58
    9 razy 3 to 27.
  • 0:58 - 0:59
    Odejmujemy i mamy.
  • 0:59 - 1:02
    Dzieli się idealnie.
  • 1:02 - 1:08
    Czyli 117 możemy przedstawić
    jako 3 razy 39.
  • 1:08 - 1:11
    Teraz 39, jest podzielne przez -
    znów korzystamy z tego samego -
  • 1:11 - 1:13
    to jest podzielne przez 3.
  • 1:13 - 1:16
    Jest to równe 3 razy 13.
  • 1:16 - 1:18
    I teraz wszystkie te liczby
    są liczbami pierwszymi.
  • 1:18 - 1:24
    Czyli możemy powiedzieć,
    że jest to równe 5 razy
  • 1:24 - 1:29
    pierwiastek kwadratowy z
    3 razy 3 razy 13.
  • 1:29 - 1:34
  • 1:34 - 1:40
    A to będzie to samo co -
    już to wiemy
  • 1:40 - 1:43
    z własności potęg -
    5 razy
  • 1:43 - 1:55
    pierwiastek z 3 razy 3
    razy pierwiastek z 13.
  • 1:55 - 1:57
    Teraz, jaki jest pierwiastek
    z 3 razy 3?
  • 1:57 - 1:58
    Cóż, czyli to jest
    pierwiastek z 9.
  • 1:58 - 2:00
    To pierwiastek
    z 3 do kwadratu.
  • 2:00 - 2:02
    One wszystkie -
    cóż, to da nam 3.
  • 2:02 - 2:05
    Czyli to się po
    prostu uprości do 3.
  • 2:05 - 2:10
    Czyli to wszystko to
    5 razy 3 razy pierwiastek z 13.
  • 2:10 - 2:15
    Czyli ta część tutaj
    da nam 15 razy
  • 2:15 - 2:20
    pierwiastek z 13.
  • 2:20 - 2:22
    Zróbmy jeszcze jeden przykład.
  • 2:22 - 2:30
    Spróbujmy uprościć 3
    razy pierwiastek kwadratowy z 26.
  • 2:30 - 2:32
    Właściwie zapiszę
    26 na żółto.
  • 2:32 - 2:35
    Jak to zrobiłem w
    poprzednim przykładzie.
  • 2:35 - 2:37
    Cóż, 26 to
    zdecydowanie liczba parzysta,
  • 2:37 - 2:39
    więc będzie podzielna
    przez 2.
  • 2:39 - 2:42
    Możemy to zapisać
    jako 2 razy 13.
  • 2:42 - 2:43
    I gotowe.
  • 2:43 - 2:44
    13 to liczba pierwsza.
  • 2:44 - 2:46
    Już mamy przedstawienie
    na czynniki pierwsze.
  • 2:46 - 2:48
    Czyli 26 nie zawiera w sobie
    kwadratu żadnej liczby.
  • 2:48 - 2:50
    Nie możemy tego
    rozłożyć
  • 2:50 - 2:51
    na czynniki używając
    innych liczb
  • 2:51 - 2:53
    i znaleźć jakiś kwadrat
    jak zrobiliśmy to tutaj.
  • 2:53 - 2:55
    117 to 13 razy 9.
  • 2:55 - 2:59
    To iloczyn kwadratu
    liczby oraz 13.
  • 2:59 - 3:02
    26 nie jest, więc uprościliśmy
    to najbardziej jak mogliśmy.
  • 3:02 - 3:08
    Czyli musimy to zostawić
    jako 3 razy pierwiastek z 26.
Title:
Simplifying square roots
Description:

more » « less
Video Language:
English
Team:
Khan Academy
Duration:
03:09

Polish subtitles

Revisions